Diamond. It can only be cut with another diamond.
<span> Ksp = [Ag+]^2[CO32-]that should be it </span>
Answer:
The situation given here is imaginary such that the life of Rock has to be found using the half-life of the element lokium that has been found inside the rock.
Half-life of any material is the amount of time taken by that particular material to decay. Now the amount of lokium found in rock can show after how many half-lives this amount has been left out.
The time elapsed will be log (L) atoms X half-life.
Explanation:
<span>The pressure inside a coke bottle is really high. This helps keep the soda carbonated. That is, the additional pressure at the surface of the liquid inside the bottle forces the bubbles to stay dissolved within the soda. </span><span>When the coke is opened, there is suddenly a great pressure differential. The initial loud hiss that is heard is this pressure differential equalizing itself. All of the additional pressure found within the bottle pushes gas out of the bottle until the pressure inside the bottle is the same as the pressure outside the bottle. </span><span>However, once this occurs, the pressure inside the bottle is much lower and the gas bubbles that had previously been dissolved into the soda have nothing holding them in the liquid anymore so they start rising out of the liquid. As they reach the surface, they pop and force small explosions of soda. These explosions are the source of the popping and hissing that continues while the soda is opened to the outside air. Of course, after a while, the soda will become "flat" when the only gas left dissolved in the liquid will be the gas that is held back by the relatively weak atmospheric pressure.</span>
Answer:
Here's what I find
Explanation:
Heisenberg observed that if we want to locate a moving electron, we must bounce photons off it.
However, this makes it recoil. By the time the photon returns to our eye, the electron will no longer be in the same place.
He concluded that there is a limit to the precision with which we can simultaneously measure the position and speed (momentum) of a particle.
The more precisely we know the electron's speed, the less precisely we know its position and vice versa.
The uncertainty in the product of the two values cannot be less than a fixed small number.