Answer:
2.11 g hydrobromic acid (correct to 3SF)
Explanation:
Molecular formula of hydrobromic acid = C2H5BrO2
mass of C2H5BrO2 = 140.96g
Beginning with what we're given, 9.03*10^21 we then make a conversion by using Avegadro's number which is 6.02*10^23 per mole (Oct. 23 at 6:02 am is national mole day :) Then, we need to convert out of moles, 140.96g hydrombromic acid per mole.
It looks like this:
9.03*10^21 molecules • (1 mol C2H5BrO2 / 6.02*10^23 molecules) • (140g C2H5BrO2 / 1 mol) = 2.1144 g C2H5BrO2
Answer:
C. The potential energy change for a chemical reaction.
Explanation:
The reaction coordinate q illustrates, graphically, the energy changes during exothermic and endothermic reactions. This graphical representation of the energy changes in the course of a chemical reaction is known as reaction coordinates. A reaction coordinate is a graphical sequence of steps by which the reaction progresses from reactants through activated complexes to products. Reaction coordinates explain how far a reaction has proceeded towards the products or from the reactants.
From the images attached below, we can see the reaction coordinates in the reaction profiles.
Answer:
Q = 2640.96 J
Explanation:
Given data:
Mass of He gas = 10.7 g
Initial temperature = 22.1°C
Final temperature = 39.4°C
Heat absorbed = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree. Specific heat capacity of He is 14.267 J/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 39.4°C - 22.1°C
ΔT = 17.3°C
Q = 10.7 g× 14.267 J/g.°C × 17.3°C
Q = 2640.96 J