Solutions of thiosulfate are light-sensitive. When exposed to light, they break down into <span>sulfur, sulfite, and sulfate compounds. That is why as much as possible, they must be stored in the dark. This is also the reason why they are stored in amber (dark-colored) bottles.</span>
A chemical reaction must occur for a compound to have different properties.
Answer:
1.55×10²² molecules.
Explanation:
We'll begin by calculating the number of mole in 5.32 g of pure lead (Pb). This can be obtained as follow:
Mass of Pb = 5.32 g
Molar mass of Pb = 207 g/mol
Mole of Pb =?
Mole = mass /molar mass
Mole of Pb = 5.32/207
Mole of Pb = 0.0257 mole
Finally, we shall determine the number of molecules in 0.0257 mole of Pb. This can be obtained as follow:
From Avogadro's hypothesis,
I mole of Pb contains 6.02×10²³ molecules.
Therefore, 0.0257 mole will contain = 0.0257 × 6.02×10²³ = 1.55×10²² molecules.
Therefore, 5.32 g of pure lead (Pb) contains 1.55×10²² molecules.
Answer:
1. The dye that absorbs at 530 nm.
Explanation:
The dye will absorb light to promote the transition of an electron from the HOMO to the LUMO orbital.
The higher the gap, the higher the energy of transition. The energy can be calculated by E = hc/λ, in which h and c are constants and λ is the wavelength.
The equation shows that the higher the energy, the higher the gap and the lower the wavelength.
Therefore, the dye with absorption at 530 nm has the higher HOMO-LUMO gap.
Answer:
88.46%
Explanation:
Percentage yield is actual/theoretical * 100
138/156 * 100 = 88.4615385