The product of the complex numbers 65(cos(14°)+ i sin(14°)) and 8(cos(4°)+ i sin(4°)) is 520[cos(18) + isin(18)]
<h3>What is an
equation?</h3>
An equation is an expression that shows the relationship between two or more numbers and variables.
Complex number is in the form z = a + bi, where a and b are real numbers.
The product of the complex numbers 65(cos(14°)+ i sin(14°)) and 8(cos(4°)+ i sin(4°)) is:
z = 65 * 8 [cos(14 + 4) + isin(14 + 4)] = 520[cos(18) + isin(18)]
Find out more on equation at: brainly.com/question/2972832
#SPJ1
Answer:
$102
Step-by-step explanation:
You subtract $30 from $132. That gives you: $102.
I hope this helps, and i hope that it's correct. sorry if its not. have a great day!
Here, we just use the following x values and put them into the equation.
y = - 0.05x + 16
y = -0.5(0) + 16
y = 16
y = - 0.05x + 16
y = -0.5(160) + 16
y = -80 + 16
y = -64
y = - 0.05x + 16
y = -0.5(320) + 16
y = - 160 + 16
y = -144
Now, to set up the table, you could list the x values and the y values.
x values :- 0,160, 320
y values:- 16, -64, -144
Is there any answer choices to what we are looking for?