The value (9/10)*81 is greater than (5/6)*81
<h3>How to determine the greater value?</h3>
The values are given as:
(5/6)*81 and (9/10)*81
Remove the common factor in both values
So, we have:
5/6 and 9/10
Convert to decimals
0.83 and 0.9
0.9 is greater than 0.83
Hence, (9/10)*81 is greater than (5/6)*81
Read more about expressions at:
brainly.com/question/723406
#SPJ1
The number of seats sold cannot be negative, so you have
... x ≥ 0, y ≥ 0
The limits on numbers of seats must be observed, so you have
... y ≤ 2000
... x + y ≤ 3000
And the revenue constraint must be met:
... 35x + 50y ≥ 90,000
Together, these inequalties are ...
{x ≥ 0, y ≥ 0, y ≤ 2000, x + y ≤ 3000, 35x + 50y ≥ 90,000}
We have the equation:

We know two points and we will use them to calculate the parameters a and b.
The point (0,3) will let us know a, as b^0=1.

Now, we use the point (2, 108/25) to calcualte b:
![\begin{gathered} y=3\cdot b^x \\ \frac{108}{25}=3\cdot b^2 \\ 3\cdot b^2=\frac{108}{25} \\ b^2=\frac{108}{25\cdot3}=\frac{108}{3}\cdot\frac{1}{25}=\frac{36}{25} \\ b=\sqrt[]{\frac{36}{25}} \\ b=\frac{\sqrt[]{36}}{\sqrt[]{25}} \\ b=\frac{6}{5} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20y%3D3%5Ccdot%20b%5Ex%20%5C%5C%20%5Cfrac%7B108%7D%7B25%7D%3D3%5Ccdot%20b%5E2%20%5C%5C%203%5Ccdot%20b%5E2%3D%5Cfrac%7B108%7D%7B25%7D%20%5C%5C%20b%5E2%3D%5Cfrac%7B108%7D%7B25%5Ccdot3%7D%3D%5Cfrac%7B108%7D%7B3%7D%5Ccdot%5Cfrac%7B1%7D%7B25%7D%3D%5Cfrac%7B36%7D%7B25%7D%20%5C%5C%20b%3D%5Csqrt%5B%5D%7B%5Cfrac%7B36%7D%7B25%7D%7D%20%5C%5C%20b%3D%5Cfrac%7B%5Csqrt%5B%5D%7B36%7D%7D%7B%5Csqrt%5B%5D%7B25%7D%7D%20%5C%5C%20b%3D%5Cfrac%7B6%7D%7B5%7D%20%5Cend%7Bgathered%7D)
Then, we can write the equation as: