Answer:
v2 = 100 Ml OR 0.1 Liters
Explanation:
(400 Ml) (10 atm) = (v2) (40 atm)
4000 = 40v2
100 Ml = v2
Liters = ml / 1000
Liters = 100 / 1000
Liters = 0.1
A link is a part of a chain and an atom is a part of a molecule. It is also a part of a compound. Your answer should be molecule and/or compound
Answer:
The heat of combustion is -25 kJ/g = -2700 kJ/mol.
Explanation:
According to the Law of conservation of energy, the sum of the heat released by the combustion reaction and the heat absorbed by the bomb calorimeter is equal to zero.
Qcomb + Qcal = 0
Qcomb = - Qcal
The heat absorbed by the calorimeter can be calculated with the following expression.
Qcal = C × ΔT
where,
C is the heat capacity of the calorimeter
ΔT is the change in temperature
Then,
Qcomb = - Qcal
Qcomb = - C × ΔT
Qcomb = - 1.56 kJ/°C × 3.2°C = -5.0 kJ
Since this is the heat released when 0.1964 g o quinone burns, the energy of combustion per gram is:

The molar mass of quinone (C₆H₄O₂) is 108 g/mol. Then, the energy of combustion per mole is:

Answer:
Indeed, the two samples should contain about the same number of gas particles. However, the molar mass of
is larger than that of
(by a factor of about
.) Therefore, the mass of the
sample is significantly larger than that of the
sample.
Explanation:
The
and the
sample here are under the same pressure and temperature, and have the same volume. Indeed, if both gases are ideal, then by Avogadro's Law, the two samples would contain the same number of gas particles (
and
molecules, respectively.) That is:
.
Note that the mass of a gas
is different from the number of gas particles
in it. In particular, if all particles in this gas have a molar mass of
, then:
.
In other words,
.
.
The ratio between the mass of the
and that of the
sample would be:
.
Since
by Avogadro's Law:
.
Look up relative atomic mass data on a modern periodic table:
Therefore:
.
.
Verify whether
:
- Left-hand side:
. - Right-hand side:
.
Note that the mass of the
sample comes with only two significant figures. The two sides of this equations would indeed be equal if both values are rounded to two significant figures.
Answer:
16.4 °C
Explanation:
Boiling point elevation is the phenomenon in which the boiling point of a solvent will increase when another compound is added to it; meaning that athe resultant solution has a higher boiling point than its pure solvent.
Using the ebullioscopic constant,
ΔT = m * i * Kb
Where,
Δ T is the temperature difference between the boiling point of the solution, Temp.f and boiling point of the pure solvent, Temp.i
Kb is the ebulliscope factor of water = 0.510 °C.kg/mol
i is the van hoffs number = 1
m is the molality in mol/kg.
Calculating the molality of the solution,
Temp.i = 100°C
Temp.f = 104.5 °C
= 4.5/(1*0.510)
= 8.8235 mol/kg
Freezing point depression is defined as the decrease in the freezing point of a solvent on the addition of a solute.
Using the same equation, but kf = 1.86 °C.kg/mol
ΔT = m * i * Kf
Temp.i = freezing point of water = 0°C
Temp.f = (8.8235*1.86) - 0
= 16.412 °C
Freezing point of the solution = 16.4 °C