I believe the answer is sugarcane
<u>Answer:</u> The value of
for the reaction at 690 K is 0.05
<u>Explanation:</u>
We are given:
Initial pressure of
= 1.0 atm
Total pressure at equilibrium = 1.2 atm
The chemical equation for the decomposition of phosgene follows:

Initial: 1 - -
At eqllm: 1-x x x
We are given:
Total pressure at equilibrium = [(1 - x) + x+ x]
So, the equation becomes:
![[(1 - x) + x+ x]=1.2\\\\x=0.2atm](https://tex.z-dn.net/?f=%5B%281%20-%20x%29%20%2B%20x%2B%20x%5D%3D1.2%5C%5C%5C%5Cx%3D0.2atm)
The expression for
for above equation follows:


Putting values in above equation, we get:

Hence, the value of
for the reaction at 690 K is 0.05
Answer:
1.395J/g°C
Explanation:
The following were obtained from the question:
Q = 6527J
M = 312g
ΔT = 15°C
C =?
Q = MCΔT
C = Q/MΔT
C = 6527/(312 x 15)
C = 1.395J/g°C
The specific heat capacity of the substance is 1.395J/g°C
Answer:

Explanation:
Density is found by dividing the mass by the volume.

The mass of the liquid is 12.7 grams.
We know that 15 mL of this liquid was added to a 50 mL graduated cylinder. Therefore, the volume is 15 mL. The 50 mL is not relevant, it only tells us about the graduated cylinder.

Substitute the values into the formula.

Divide.

Round to the nearest hundredth. The 6 in the tenth place tells us to round the 4 to a 5.

The density of the liquid is about 0.85 grams per milliliter and choice A is correct.
The molecule with same molecular formula but different arrangement of atoms is said to be an isomer.
When 2,2-dimethylbutane reacts with chlorine in the presence of light gives three isomers that is
(3-chloro-2,2-dimethylbutane),
(1-chloro-2,2-dimethylbutane) and
(1-chloro-3,3-dimethylbutane).
In above case, the molecular formula of all isomers are same i.e.
but chlorine is arranged in different positions of carbon. Thus, results isomers.
The reaction is shown in the image.