It is A lubricant that reduces frictions creation
<span>when the number of moles Ca = mass of Ca / molar mass of Ca.
and we can get the molar mass of Ca, it is = 40 g/mol
and we have already the mass of Ca (given) = 9.8 g
so, by substitution: the moles Ca = 9.8 g / 40 g/mol
= 0.245 moles</span>
Hey there!
Na + H₂O → NaOH + H₂
First, balance O.
One on the left, one on the right. Already balanced.
Next, balance H.
Two on the left, three on the right. Let's add a coefficient of 2 in front of NaOH and a coefficient of 2 in front of H₂O, so we have 4 on each side.
Na + 2H₂O → 2NaOH + H₂
Lastly, balance Na.
One on the left, two on the right. Add a coefficient of 2 in front of Na.
2Na + 2H₂O → 2NaOH + H₂
This is our final balanced equation.
Hope this helps!
The molar mass of aluminum sulftae is 342.14 g/mol.
Since the subscript shows that there are 3 sulfurs within the substance, the total mass of sulfur is 96.21g/mol
Now take the mass of the sulfur and divide it by the molar mass of aluminum sulfate, then multiply by 100:
(96.21/342.15)(100) = 28.1% mass composition of sulfate
Because it happens somewhere