You would want to know everything just Incase anything happens because maybe you get lost
<span>pv=nrt; Pressure and moles are constant.
p=nr(150k)/.5 L; Pressure initially
After temp change
pv=nrt; What is volume?
v=nr(350k)/p; p is constant so we can substitute from above
v=nr(350k)/(nr(150k)/.5 L))
v=350/150/.5 L
v=4.66 liters</span>
Hey There!
At neutralisation moles of H⁺ from HCl = moles of OH⁻ from Ca(OH)2 so :
0.204 * 42.8 / 1000 => 0.0087312 moles
Moles of Ca(OH)2 :
2 HCl + Ca(OH)2 = CaCl2 + 2 H2O
0.0087312 / 2 => 0.0043656 moles ( since each Ca(OH)2 ives 2 OH⁻ ions )
Therefore:
Molar mass Ca(OH)2 = 74.1 g/mol
mass = moles of Ca(OH)2 * molar mass
mass = 0.0043656 * 74.1
mass = 0.32 g of Ca(OH)2
Hope that helps!
An increase in motion and less attraction between particles
Answer:
The new temperature of the nitrogen gas is 516.8 K or 243.8 C.
Explanation:
Gay-Lussac's law indicates that, as long as the volume of the container containing the gas is constant, as the temperature increases, the gas molecules move faster. Then the number of collisions with the walls increases, that is, the pressure increases. That is, the pressure of the gas is directly proportional to its temperature.
Gay-Lussac's law can be expressed mathematically as follows:
Where P = pressure, T = temperature, K = Constant
You want to study two different states, an initial state and a final state. You have a gas that is at a pressure P1 and at a temperature T1 at the beginning of the experiment. By varying the temperature to a new value T2, then the pressure will change to P2, and the following will be fulfilled:

In this case:
- P1= 2 atm
- T1= 50 C= 323 K (being 0 C= 273 K)
- P2= 3.2 atm
- T2= ?
Replacing:

Solving:


T2= 516.8 K= 243.8 C
<u><em>The new temperature of the nitrogen gas is 516.8 K or 243.8 C.</em></u>