Ion-dipole forces
H2O has hydrogen bonding, which is a form of dipole-dipole forces, and NO3- is an ion, so the intermolecular attraction is ion-dipole.
Some minerals tend to look alike.
The molar mass of the unknown gas is 184.96 g/mol
<h3>Graham's law of diffusion </h3>
This states that the rate of diffusion of a gas is inversely proportional to the square root of the molar mass i.e
R ∝ 1/ √M
R₁/R₂ = √(M₂/M₁)
<h3>How to determine the molar mass of the unknown gas </h3>
The following data were obtained from the question:
- Rate of unknown gas (R₁) = R
- Rate of CH₄ (R₂) = 3.4R
- Molar mass of CH₄ (M₂) = 16 g/mol
- Molar mass of unknown gas (M₁) =?
The molar mass of the unknown gas can be obtained as follow:
R₁/R₂ = √(M₂/M₁)
R / 3.4R = √(16 / M₁)
1 / 3.4 = √(16 / M₁)
Square both side
(1 / 3.4)² = 16 / M₁
Cross multiply
(1 / 3.4)² × M₁ = 16
Divide both side by (1 / 3.4)²
M₁ = 16 / (1 / 3.4)²
M₁ = 184.96 g/mol
Learn more about Graham's law of diffusion:
brainly.com/question/14004529
#SPJ1
Answer:
Nitrogen
Explanation:
Nitrogen has 5 Valence Electrons.
And its atomic mass is also less than Bismuth.
There are other elements in the 5th row but this one has the lowest atomic mass compared to the others.
Answer:
The OH group
Explanation:
Benzhydrol contains OH hydroxyl group in its molecule while fluorene does not. At first glance, one would think that OH, which contributes to hydrogen bonding would causes melting point of benzhydrol to be higher than fluorene. <em>However, </em>the structure of benzhydrol, which is 2 benzene rings connected to center hydroxyl carbon (PhCOHPh), allows for each benzene rings in benzhydrol to rotate until both rings are perpendicular to minimize repulsive force. This prevents the molecule from stacking on each other due to its non flat shape, and thus, lowering its melting point in contrast to flat fluorene molecule.