This problem may easily solved by applying the conservation of mass, which states that the total mass before and after a change is constant because mass can neither be created nor destroyed.
We know that water consists of only hydrogen and water, and that there are no other reactants except hydrogen and oxygen. Thus:
Mass of reactants = Mass of product
mass of hydrogen + mass of oxygen = mass of water
4 + mass of oxygen = 36
mass of oxygen = 32 grams
Answer:
80.1 grams
Explanation:
Find the molar mass of CH3OH first by using the periodic table values.
12.011 g/mol C + (1.008*3 g/mol H) + 15.999g/mol O + 1.008 g/mol H
=32.042 so that is the molar mass
Now that you have 2.50 moles of CH3OH, you can calculate the mass in g
2.50molCH3OH * (32.042g CH3OH / 1 mol CH3OH) = 80.105
32.042g / 1 mol is the same as 32.042 g/mol
Since there are 3 sig figs in the problem (2.50 has 3 sig figs), you round to 80.1 g CH3OH
A Bronsted-Lowry acid-base is a molecule or ion that donates a hydrogen ion in a reaction.
<em>Brainliest Please?</em>
Answer:
<em>An intramolecular force is between that atoms makeup a molecule. An intermolecular force is between entire molecules. A non-polar covalent bond occurs when the electrons are equally shared between atoms.</em>