It takes more energy to remove the second electron from a lithium atom than it does to remove the fourth electron from a carbon atom because its inner core e, not valence e. C's 4th removed e is still a valence e. And also <span>because more nuclear charge acting on the second electron, it is more close to the nucleus, thus the the protons attract it more than the 4th electron.</span>
Incomplete question as number of moles and length is missing.So I have assumed 3 moles and length of 0.300 m.So the complete question is here:
Three moles of an ideal gas are in a rigid cubical box with sides of length 0.300 m.What is the force that the gas exerts on each of the six sides of the box when the gas temperature is 20.0∘C?
Answer:
The Force act on each side is 2.43×10⁴N
Explanation:
Given data
n=3 mol
L=0.3 m
Temperature=20.0°C=293 K
To find
Force F
Solution
To get force act on each side it would employ by
F=P.A
Where P is pressure
A is Area
First we need to find pressure by applying ideal gas law
So

So The Force is given as:

The Force act on each side is 2.43×10⁴N
Answer:
The correct answer is - C) Jackie may maintain healthy body fat levels.
Explanation:
Jackie has a very active daily and on weekends routine that includes riding the bike, playing volleyball, pushing weeds, and sweeping the porch. The activities that Jackie is performing daily as well as the time that she spends on exercise may help her to maintain body fat levels.
Being physically active helps in maintaining fat levels in the body of an individual, and it is healthy for the individual.
Thus, the correct answer is - C) Jackie may maintain healthy body fat levels.
Answer:
a) 17.8 m/s
b) 28.3 m
Explanation:
Given:
angle A = 53.0°
sinA = 0.8
cosA = 0.6
width of the river,d = 40.0 m,
the far bank was 15.0 m lower than the top of the ramp h = 15.0 m,
The river itself was 100 m below the ramp H = 100 m,
(a) find speed v
vertical displacement

putting values h=15 m, v=0.8
............. (1)
horizontal displacement d = vcosA×t = 0.6×v ×t
so v×t = d/0.6 = 40/0.6
plug it into (1) and get

solving for t we get
t = 3.734 s
also, v = (40/0.6)/t = 40/(0.6×3.734) = 17.8 m/s
(b) If his speed was only half the value found in (a), where did he land?
v = 17.8/2 = 8.9 m/s
vertical displacement = 
⇒ 
t = 5.30 s
then
d =v×cosA×t = 8.9×0.6×5.30= 28.3 m