Answer:
Velocity, v = 0.239 m/s
Explanation:
Given that,
The distance between two consecutive nodes of a standing wave is 20.9 cm = 0.209 m
The hand generating the pulses moves up and down through a complete cycle 2.57 times every 4.47 s.
For a standing wave, the distance between two consecutive nodes is equal to half of the wavelength.

Frequency is number of cycles per unit time.

Now we can find the velocity of the wave.
Velocity = frequency × wavelength
v = 0.574 × 0.418
v = 0.239 m/s
So, the velocity of the wave is 0.239 m/s.
The speed of light is: c
= 3x10^8 m/s <span>
or
c = 186,000,000 miles/sec = 1.86x10^8 mi/s
1 furlong = 0.125 mile
1 fortnight = 2 weeks(7d/wk)(24h/d)(3600s/h)
= 1209600s = 1.2096x10^6 s
Therefore,
c =1.86x10^8 mi/s(1furl/0.125mi)(1.2096x10^6s/fort)
<span>c = 18x10^14 furlong/fortnight = 18x10^8 Mfurlong/fortnight</span></span>
V=IR
Potential Difference (v)= Current (A) * Resistance (Ω)
As V increases, R also increases.
The <span>force that is needed to accelerate an object 5 m/s if the object has a mass of 10kg 50N because you multiply 5 and 10</span>
The work of Brian mind interface is to learn that’s my guess lol