Answer:
ramp b requires less force than ramp a
Explanation:
Answer:
400
Explanation:
Formula used in solution:


The given information:


Solution

Answer:

Answer:
A) Its density will decrease
Explanation:
When an object is heated, its volume increases. This is due to the fact that the particles in the medium vibrate more (if it is a solid) or they move more (if it is a liquid or a gas), therefore they tend to occupy a larger space.
At the same time, the mass of the object does not change, because the mass just represents the amount of matter contained in the object, so it does not increase/decrease at different temperatures.
The density of an object is defined as the ratio between the mass (m) and the volume (V):

We said that the mass remains unchanged while the volume increases: since the density is inversely proportional to the volume, this means that the density decreases.
Answer:
beam of light converges to a point A. A lens is placed in the path of the convergent beam 12 cm from P.
To find the point at which the beam converge if the lens is (a) a convex lens of focal length 20 cm, (b) a concave lens of focal length 16 cm
Solution:
As per the given criteria,
the the object is virtual and the image is real (as the lens is placed in the path of the convergent beam)
(a) lens is a convex lens with
focal length, f=20cm
object distance, u=12cm
applying the lens formula, we get
f
1
=
v
1
−
u
1
⟹
v
1
=
f
1
+
u
1
⟹
v
1
=
20
1
+
12
1
⟹
v
1
=
60
3+5
⟹v=7.5cm
Hence the image formed is real, at 7.5cm from the lens on its right side.
(b) lens is a concave lens with
focal length, f=−16cm
object distance, 12cm
applying the lens formula, we get
f
1
=
v
1
−
u
1
⟹
v
1
=
f
1
+
u
1
⟹
v
1
=
−16
1
+
12
1
⟹
v
1
=
48
−3+4
⟹v=48m
Hence the image formed is real, at 48 cm from the lens on the right side.