Answer:
For the complete question provided in explanation, if the elevator moves upward, then the apparent weight will be 1035 N. While for downward motion the apparent weight will be 435 N.
Explanation:
The question is incomplete. The complete question contains a velocity graph provided in the attachment. This is the velocity graph for an elevator having a passenger of 75 kg.
From the slope of graph it is clear that acceleration at t = 1 sec is given as:
Acceleration = a = (4-0)m/s / (1-0)s = 4 m/s^2
Now, there are two cases:
1- Elevator moving up
2- Elevator moving down
For upward motion:
Apparent Weight = m(g + a)
Apparent Weight = (75 kg)(9.8 + 4)m/s^2
<u>Apparent Weight = 1035 N</u>
For downward motion:
Apparent Weight = m(g - a)
Apparent Weight = (75 kg)(9.8 - 4)m/s^2
<u>Apparent Weight = 435 N</u>
E=F*d/2 = k*d * d/2 =>
d^2= 2*E/k
d= sqrt(2*E/k)=sqrt(2*1J/1000N/m)=sqrt(20m^2)/100=0.045 m = 45 mm
Answer: sorry but I can’t help
Explanation:because I can’t see it
A research question that would complete the third question you need that are related to the first 2 questions which are:
- “what type of masks help prevent fog on glasses when breathing?”
- “does a mask’s material affect the level of fog on glasses as an effect of breathing?”
Would be: "Are there any available masks that could prevent fog on glasses that could be improved upon"?
This new research question would help you find out if there is an already existing mask that could be made better.
<h3>What is a Research Question?</h3>
This refers to "a question that a research project sets out to answer". and seeks to give answers to particular phenomena.
Hence, we can see that the new research question Would be: "Are there any available masks that could prevent fog on glasses that could be improved upon"?
This new research question would help you find out if there is an already existing mask that could be made better.
Read more about research questions here:
brainly.com/question/25257437
#SPJ1