1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dangina [55]
2 years ago
11

What are some different kinds of bias and how can they ruin a research project

Physics
2 answers:
otez555 [7]2 years ago
8 0

Answer:

Explanation:

             I'm not sure about the different types (I think one was selective bias) but they can ruin research if the person decides to use there bias.                                                       Example: if I'm trying to prove such and such movie is good and I'm doing research on it. I might choose to do a poll. Because I want to prove that this movie is the best I will pick the people who I know liked the movie. That is being biased.

m_a_m_a [10]2 years ago
4 0

Three types of bias can be distinguished: information bias, selection bias, and confounding. These three types of bias and their potential solutions are discussed using various examples.

Bias can damage research, if the researcher chooses to allow his bias to distort the measurements and observations or their interpretation. When faculty are biased about individual students in their courses, they may grade some students more or less favorably than others, which is not fair to any of the students.

You might be interested in
A certain light truck can go around a flat curve having a radius of 150 m with a maximum speed of 35.5 m/s. a) What is the coeff
postnew [5]

Answer:

The coefficient of friction present between the roadway and the wheels of the truck is <u>0.833</u>.

Explanation:

Given:

Radius of the curve (R) = 150 m

Maximum speed of truck (v) = 35.5 m/s

Let the coefficient of friction between the roadway and the wheels of the truck be "μ".

As the truck is moving around a circular curve. So, the force acting on it is centripetal force which acts in the radial inward direction towards the center of the circular curve.

The centripetal force acting on the truck is given as:

F_c=\frac{mv^2}{R}

Now, the friction between the roadway and the wheels of the truck is responsible for providing the necessary centripetal force. So, frictional force is equal to the centripetal force necessary for circular motion.

Frictional force is given as:

f=\mu N

Where, 'N' is the normal force. Since there is no vertical motion, the normal force is equal to weight of truck. So,

N=mg

Therefore, frictional force, f=\mu mg

Now, frictional force = centripetal force

f=F_c\\\\\mu mg=\frac{mv^2}{R}\\\\\mu = \frac{v^2}{Rg}

Plug in the given values and solve for 'μ'. This gives,

\mu=\frac{(35\ m/s)^2}{(150\ m)(9.8\ m/s^2)}\\\\\mu=\frac{1225\ m^2/s^2}{1470\ m^2/s^2}\\\\\mu=0.833

Therefore, the coefficient of friction present between the roadway and the wheels of the truck is 0.833

7 0
3 years ago
Calculate the net force on the right charge due to the other two. Enter a positive value if the force is directed to the right a
lbvjy [14]

Answer:

Answer:

A. - 0.017N. It acts to the left.

B. - 0.043N. It acts to the left.

C. 0.060N. It acts to the right.

Explanation:

A. For the +65μC charge, we consider it to be the origin. Hence, the two other charges are on the +x axis.

The net coulombs force on the charge is

F = [KQ(1)Q(2)]/(r^2) + [KQ(1)Q(3)]/(r^2)

Where K = Coloumbs constant =

Q(1) = charge on the leftmost side.

Q(2) = charge in the middle.

Q(3) = charge on the rightmost side.

F = [(8.988 × 10^9)×(65×10^-6)×(48×10^-6)]/(40^2) + [(8.988 × 10^9)×(-95×10^-6)×(65×10^-6)]/(40^2)

F = 0.01753 - 0.03469

F = -0.017N

It has a negative sign, hence, it acts to the left.

B. For the +48μC charge, we consider it to be the origin. Hence, the leftmost charge is on the - x axis and the rightmost charge is on the +x axis.

The net coulombs force on the charge is

F = [-KQ(1)Q(3)]/(r^2) + [KQ(2)Q(3)]/(r^2)

F = [-(8.988×10^9)×(65×10^-6)×(48×10^-6)]/(40^2) + [(8.988 × 10^9)×(48×10^-6)×(-95×10^-6)]/(40^2)

F = -0.017 - 0.02562

F = - 0.043N

It has a negative sign, hence, it acts to the left.

C. For the -95μC charge, we consider it to be the origin. Hence, the two other charges are on the - x axis.

The net coulombs force on the charge is

F = [-KQ(1)Q(3)]/(r^2) - [KQ(2)Q(3)]/(r^2)

F = [-(8.988×10^9)×(65×10^-6)×(-95×10^-6)]/(40^2) - [(8.988 × 10^9)×(48×10^-6)×(-95×10^-6)]/(40^2)

F = +0.03469 + 0.02562

F = +0.060N

It has a positive sign, hence, it acts to the right.

Read more on Brainly.com - brainly.com/question/14592748#readmore

Explanation:

5 0
3 years ago
How does a boulder change
Minchanka [31]

a boulder can change due to erosion and weathering. it can change shape and sometimes color, possibly.

3 0
3 years ago
A space probe is fired as a projectile from the Earth's surface with an initial speed of 2.05 104 m/s. What will its speed be wh
Elanso [62]

Answer:

The value is  v  =  2.3359 *10^{4} \ m/s

Explanation:

From the question we are told that

  The  initial speed is u =  2.05 *10^{4} \  m/s

 Generally the total energy possessed by the space probe when on earth is mathematically represented as

             T__{E}} =  KE__{i}} +  KE__{e}}

Here  KE_i is the kinetic energy of the space probe due to its initial speed which is mathematically represented as

          KE_i =   \frac{1}{2}  *  m  *  u^2

=>       KE_i =   \frac{1}{2}  *  m  *  (2.05 *10^{4})^2

=>       KE_i =  2.101 *10^{8} \ \ m \ \ J

And  KE_e is the kinetic energy that the space probe requires to escape the Earth's gravitational pull , this is mathematically represented as

       KE_e =  \frac{1}{2}  *  m *  v_e^2

Here v_e is the escape velocity from earth which has a value v_e =  11.2 *10^{3} \  m/s

=>    KE_e =  \frac{1}{2}  *  m *  (11.3 *10^{3})^2

=>    KE_e =  6.272 *10^{7} \  \  m  \ \   J

Generally given that at a position that is very far from the earth that the is Zero, the kinetic energy at that position is mathematically represented as

        KE_p =  \frac{1}{2}  *  m *  v^2

Generally from the law energy conservation we have that

        T__{E}} =  KE_p

So

       2.101 *10^{8}  m  +  6.272 *10^{7}  m  =   \frac{1}{2}  *  m *  v^2

=>     5.4564 *10^{8} =   v^2

=>     v =  \sqrt{5.4564 *10^{8}}

=>     v  =  2.3359 *10^{4} \ m/s

4 0
2 years ago
What is the monthly cost of using a 750 W refrigerator that runs for 8 hours every day, if the cost per kWh is $0.23?
disa [49]

Answer:

Assuming there are 28 days in each month,

750W = 0.75kW

Cost of electric bill = 0.75 × 8 × 28 × $0.23

                               = $38.64

8 0
2 years ago
Other questions:
  • The Mariana Trench is the deepest ocean trench on. This trench occurs at a plante boundary where
    8·1 answer
  • The temperature of an object is a measure of the average thermal energy of the molecule in the object true or false
    11·1 answer
  • A student walks to school at a speed of 1.2 m/s. if the students mass is 53kg, what is the students kinetic energy
    15·1 answer
  • What are the methods of heat transfer? ​
    13·1 answer
  • A hawk flew 600 meters in 60 seconds. A sparrow flew 400 meters in 30 seconds. Which bird flew faster? How fast did each bird fl
    10·1 answer
  • Find the velocity in m/s of a swimmer who swims 110m toward the shore in 72 s
    7·1 answer
  • Drawing a ray diagram for an object far from convex lens requires how many rays?
    14·1 answer
  • A 2.0 kg block is released from rest at the top of a curved incline in the shape of a quarter of a circle of radius R = 3.0 m. T
    13·1 answer
  • According to the diagram of the electromagnetic spectrum shown, what would best represent the
    12·1 answer
  • Which rational number could be graphed between 0 and 1?A number line going from negative 5 to positive 3 in increments of 1.Nega
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!