<span> d = r*t is the basic distance equation
d = 6000 km
t with the tail wind = 6 hr
r with the tail wind = speed of the plane + wind speed = s + w
t with the head wind = 7.5 hr
r with the head wind = speed of the plane - wind speed = s-w
(s+w)*6 = 6000
(s-w)*7.5 = 6000
s + w = 1000
s - w = 800
</span><span> 2s = 1800
s = 900 km/h
s + w = 1000
w = 100
Check the anwer by calculating the return trip.
(900-100) * 7.5 = 800 * 7.5
800 * 7.5 = 6000 km
Answer: The rate of the jet in still air is 900 km/h. The rate of the wind is 100 km/hr.</span>
Answer:
power emitted is 1.75 W
Explanation:
given data
length l = 5 cm = 5 ×
m
diameter d = 0.074 cm = 74 ×
m
total filament emissivity = 0.300
temperature = 3068 K
to find out
power emitted
solution
we find first area that is π×d×L
area = π×d×L
area = π×74 ×
×5 ×
area = 1162.3892 ×
m²
so here power emitted is express as
power emitted = E × σ × area × (temperature)^4
put here all value
power emitted = 0.300× 5.67 × 1162.3892 ×
× (3068)^4
power emitted = 1.75 W
Angular acceleration = (change in angular speed) / (time for the change)
change in angular speed = (zero - 2,600 RPM) = -2,600 RPM
time for the change = 10 sec
Angular acceleration = -2600 RPM / 10 sec = -260 rev / min-sec
(-260 rev/min-sec) x (1 min / 60 sec) = <em>-(4 1/3) rev / sec²</em>
Since the acceleration is negative, the motor is slowing down.
You might call that a 'deceleration' of (4 1/3) rev/sec² .
The average speed is 1/2(2,600 + 0) = 1,300 rev/min = (21 2/3) rev/sec.
Number of revs = (average speed) x (time) = (21 2/3) x (10sec) = <em>(216 2/3) revs</em>
Kinetic energy and potential energy pair is the quantity in which one will increase then other will decrease
As we know that sum of kinetic energy and potential energy will always remain conserved
So here we will have

so here as we move away from mean position the kinetic energy will decrease while at the same time potential energy will increase.
So the pair of potential energy and kinetic energy will satisfy the above condition
Answer:
Minimum work = 5060 J
Explanation:
Given:
Mass of the bucket (m) = 20.0 kg
Initial speed of the bucket (u) = 0 m/s
Final speed of the bucket (v) = 4.0 m/s
Displacement of the bucket (h) = 25.0 m
Let 'W' be the work done by the worker in lifting the bucket.
So, we know from work-energy theorem that, work done by a force is equal to the change in the mechanical energy of the system.
Change in mechanical energy is equal to the sum of change in potential energy and kinetic energy. Therefore,

Therefore, the work done by the worker in lifting the bucket is given as:

Now, plug in the values given and solve for 'W'. This gives,

Therefore, the minimum work that the worker did in lifting the bucket is 5060 J.