Its rays point away from the charge
Answer:
Option B. 5 nC
Explanation:
From the question given above, the following data were obtained:
Capicitance (C) = 100 pF
Potential difference (V) = 50 V
Quantity of charge (Q) =?
Next, we shall convert 100 pF to Farad (F). This can be obtained as follow:
1 pF = 1×10¯¹² F
Therefore,
100 pF = 100 pF × 1×10¯¹² F / 1 pF
100 pF = 1×10¯¹⁰ F
Next, we shall determine the quantity of charge. This can be obtained as follow:
Capicitance (C) = 1×10¯¹⁰ F
Potential difference (V) = 50 V
Quantity of charge (Q) =?
Q = CV
Q = 1×10¯¹⁰ × 50
Q = 5×10¯⁹ C
Finally, we shall convert 5×10¯⁹ C to nano coulomb (nC). This can be obtained as follow:
1 C = 1×10⁹ nC
Therefore,
5×10¯⁹ C = 5×10¯⁹ C × 1×10⁹ nC / 1 C
5×10¯⁹ C = 5 nC
Thus, the quantity of charge is 5 nC
Velocity is define as the time rate taken for a change in acceleration
Explanation:
It is given that, Onur drops a basketball from a height of 10 m on Mars, where the acceleration due to gravity has a magnitude of 3.7 m/s².
The second equation of kinematics gives the relationship between the height reached and time taken by it.
Here, the ball is droped under the action of gravity. The value of acceleration due to gravity on Mars is positive.
We want to know how many seconds the basketball is in the air before it hits the ground. So, the formula is :

t is time taken by the ball to hit the ground
is initial speed of the ball
So, the correct option is (A).