The correct answer is D . Milk
This is a strong acid but the actual value of the pH will depend on its strength.
Acids have a pH of less than 7.
The titrant for this exercise. suppose Ca(OH)₂ were used as the titrant, instead of NaOH. This will make the titrant twice as concentrated in hydroxide ion. the analyte will still be HC₂H₃O₂. the stoichiometry ratio of HC₂H₃O₂ to Ca(OH)₂ is 1 : 2.
The balanced reaction of the given condition as follow :
Ca(OH)₂ + 2HC₂H₃O₂ ------> Ca(C₂H₃O₂)₂ + 2H₂O
from the equation it is clear that stoichiometry of Ca(OH)₂ is 1 and the stoichiometry of HC₂H₃O₂ is 2. therefore the stoichiometry ratio of HC₂H₃O₂ to Ca(OH)₂ is 1 : 2.
Thus, The titrant for this exercise. suppose Ca(OH)₂ were used as the titrant, instead of NaOH. This will make the titrant twice as concentrated in hydroxide ion. the analyte will still be HC₂H₃O₂. the stoichiometry ratio of HC₂H₃O₂ to Ca(OH)₂ is 1 : 2.
To learn more about stoichiometry here
brainly.com/question/13145466
#SPJ4
Answer:
335.35 grams
Explanation:
Convert grams of H2SO4 to moles and get 4.08 moles.
Using stoichiometry, the chemical equation tells us that for every mole of H2SO4, one mole of Na2SO4 is produced. This means that, theoretically, you should get 4.08 moles.
Convert moles to grams and get 335.34 g.
However, if you were to actually perform this reaction, you would get less than the theoretical value.
Hope this helps! <3
Answer:

Explanation:
We are asked to find the specific heat capacity of a sample of lead. The formula for calculating the specific heat capacity is:

The heat absorbed (Q) is 237 Joules. The mass of the lead sample (m) is 22.7 grams. The change in temperature (ΔT) is the difference between the final temperature and the initial temperature. The temperature increases <em>from</em> 29.8 °C <em>to </em>95.6 °C.
- ΔT = final temperature -inital temperature
- ΔT= 95.6 °C - 29.8 °C = 65.8 °C
Now we know all three variables and can substitute them into the formula.
- Q= 237 J
- m= 22.7 g
- ΔT = 65.8 °C

Solve the denominator.
- 22.7 g * 65.8 °C = 1493.66 g °C

Divide.

The original values of heat, temperature, and mass all have 3 significant figures, so our answer must have the same. For the number we found that is the thousandth place. The 6 in the ten-thousandth place tells us to round the 8 up to a 9.

The specific heat capacity of lead is approximately <u>0.159 Joules per gram degree Celsius.</u>