1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
UkoKoshka [18]
2 years ago
9

Calculate the self-inductance (in mH) of a 45.0 cm long, 10.0 cm diameter solenoid having 1000 loops. mH (b) How much energy (in

J) is stored in this inductor when 21.0 A of current flows through it? J (c) How fast (in s) can it be turned off if the induced emf cannot exceed 3.00 V? s
Physics
1 answer:
Karo-lina-s [1.5K]2 years ago
3 0

Answer:

(a) The self inductance, L = 21.95 mH

(b) The energy stored, E = 4.84 J

(c) the time, t = 0.154 s

Explanation:

(a) Self inductance is calculated as;

L = \frac{N^2 \mu_0 A}{l}

where;

N is the number of turns = 1000 loops

μ is the permeability of free space = 4π x 10⁻⁷ H/m

l is the length of the inductor, = 45 cm = 0.45 m

A is the area of the inductor (given diameter = 10 cm = 0.1 m)

A = \pi r^2 = \frac{\pi d^2}{4} = \frac{\pi \times (0.1)^2}{4} = 0.00786 \ m^2

L = \frac{(1000)^2 \times (4\pi \times 10^{-7}) \times (0.00786)}{0.45} \\\\L = 0.02195 \ H\\\\L = 21.95 \ mH

(b) The energy stored in the inductor when 21 A current ;

E = \frac{1}{2}LI^2\\\\E = \frac{1}{2} \times (0.02195) \times (21) ^2\\\\E = 4.84 \ J

(c) time it can be turned off if the induced emf cannot exceed 3.0 V;

emf = L \frac{\Delta I}{\Delta t} \\\\t = \frac{LI}{emf} \\\\t = \frac{0.02195 \times 21}{3} \\\\t = 0.154 \ s

You might be interested in
"A toy airplane flies clockwise at a constant speed in a horizontal circle of radius 8.0 meters. The magnitude of the accelerati
Citrus2011 [14]

For the answer to the question above, so at the instant, the acceleration of the airplane is southward, the direction of the velocity is also southward. The direction should be the same because it is both a vector quantity and it does not make sense if the direction and acceleration have different direction.
6 0
3 years ago
Read 2 more answers
Equipotential lines are usually shown in a manner similar to topographical contour lines, in which the difference in the value o
Elza [17]

Answer:

B or 2

Explanation:

5 0
2 years ago
You are standing on a sheet of ice that covers the football stadium parking lot in Buffalo; there is negligible friction between
Anni [7]

Answer:

0.074m/s

Explanation:

We need the formula for conservation of momentum in a collision, this equation is given by,

m_1u_1+m_2u_2 = m_1v_1+m_2v_2

Where,

m_1 = mass of ball

m_2 = mass of the person

u_1 = Velocity of ball before collision

u_2 = Velocity of the person before collision

v_1 = velocity of ball afer collision

v_2= velocity of the person after collision

We know that after the collision, as the person as the ball have both the same velocity, then,

v_1 = v_2

m_1u_1 + m_2u_2 = (m_1+m_2)v_2

Re-arrenge to find v_2,

v_2 = \frac{m_1u_1+m_2u_2}{m_1+m_2}

Our values are,

m_1= 0.425kg

u_1= 12m/s

m_2= 68.5kg

u_2= 0m/s

Substituting,

v_2 = \frac{(0.425)(12)+(68.5)(0)}{0.425+68.5}

v_2 = 0.074m/s

<em />

<em>The speed of the person would be 0.074m/s after the collision between him/her and the ball</em>

7 0
3 years ago
A motorcycle is stopped at a stop light. When the light turns green it
ss7ja [257]

Answer: 18.9 m

Explanation:

i did the kinematic equation & found the answer.

8 0
3 years ago
Calculate the energy of the green light emitted, per photon, by a mercury lamp with a frequency of 5.49 × 1014 hz.
Tcecarenko [31]
The energy of a photon is given by
E=hf
where
h=6.6 \cdot 10^{-34} Js is the Planck constant
f is the frequency of the photon

In our problem, the frequency of the light is 
f=5.49 \cdot 10^{14}Hz
therefore we can use the previous equation to calculate the energy of each photon of the green light emitted by the lamp:
E=hf=(6.6 \cdot 10^{-34}Js)(5.49 \cdot 10^{14} Hz)=3.62 \cdot 10^{-19} J
8 0
3 years ago
Other questions:
  • A 2.0-kg object is lifted vertically through 3.00 m by a 150-N force. How much work is done on the object by gravity during this
    9·2 answers
  • A solenoid made from 600 turns of wire on a cylindrical form 2cm in diameter and 10cm long has a current of 3 amps on it. Find t
    15·2 answers
  • A block sliding on a horizontal surface is attached to one end of a horizontal spring with spring constant k=432 Nm ; the other
    13·1 answer
  • A 62-kg person jumps from a window to a fire net 20.0 m directly below, which stretches the net 1.4 m. Assume that the net behav
    15·1 answer
  • A 2-kg ball is thrown at 3 m/s. What is the ball's momentum? *
    11·1 answer
  • Got it
    7·1 answer
  • 1 + 1 + 1 + 2 equals to what​
    7·2 answers
  • Suppose that you'd like to find out if a distant star is moving relative to the earth. The star is much too far away to detect a
    7·1 answer
  • . The naturally occurring charge on the ground on a fine day out in the open country is –1.00nC/m2 . (a) What is the electric fi
    5·1 answer
  • Which of the following statements is TRUE?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!