Answer:
false statement : b ) For the motion of a cart on an incline plane having a coefficient of kinetic friction of 0.5, the magnitude of the change in kinetic energy equals the magnitude of the change in gravitational potential energy
Explanation:
mechanical energy = potential energy + kinetic energy = constant
differentiating both side
Δ potential energy + Δ kinetic energy = 0
Δ potential energy = - Δ kinetic energy
first statement is true.
Friction is a non conservative force so inter-conversion of potential and kinetic energy is not possible in that case. In case of second option, the correct relation is as follows
change in gravitational potential energy = change in kinetic energy + work done against friction .
So given 2 nd option is incorrect.
In case of no change in gravitational energy , work done is equal to
change in kinetic energy.
Answer:
300 m
Explanation:
The train accelerate from the rest so u = 0 m/sec
Final speed that is v = 80 m/sec
Time t = 30 sec
The distance traveled by first plane = 1200 m
We know the equation of motion
where s is distance a is acceleration and u is initial velocity
Using this equation for first plane 

As the acceleration is same for both the plane so a for second plane will be 2.67 
The another equation of motion is
using this equation for second plane 
s = 300 m
Answer:
Abdominal
Sitting up, postural alignment
Biceps
Lifting, pulling
Deltoids
Overhead lifting
Erector Spinae
Postural alignment
Gastronemius & Soleus
Push off for walking, standing on tiptoes
Gluteus
Climbing stairs, walking, standing up
Hamstrings
Walking
Latissimus Dorsi & Rhomboids
Postural alignment, pulling open a door
Obliques
Rotation and side flexion of body
Pectoralis
Push up, pull up, bench press
Quadriceps
Climbing stairs, walking, standing up
Trapezius
Moves head sideways
Triceps
Pushing
God bless you. Because my soul almost left my body when i had to do this.