Based on the situation above the the work done was 400 Joules. <span>Q = FS cos(theta) is the so-called work function. It's important to learn the work physics; you'll see it over and over in science/physics class. Theta is the angle between the force vector F and the distance vector S. In your problem we assume theta = 0, the two vectors were assumed aligned.</span>
In one of the most amazing coincidences in all of science,
the part of the electromagnetic spectrum that's visible to the
human eye is called "visible light".
Visible light is not 'divided' into anything. We mention the names
to seven of the colors in visible light. But all of the thousands of
OTHER colors that we can see are in there too, even though we
don't bother to list their names when we buzz through the rainbow
in the third grade.
Answer:
Explanation:
According to the property of a conductor, the entire charge will reside on the outer surface of the conductor, there is no charge on the inner side of the conductor. As the uncharged metal ball touches the inner surface of the conductor, it does not attain any charge as the inner side of the conductor has no charge.
So option (c) is correct.
Answer:
Explanation:
The equation for Power is
P = Work/time to do work and the equation for work is
Work = FΔx
We first need to find the amount of work done, then we can find the power it took to do that work.
W = 2000(9.8)(28) so
W = 550,000 N*m
Now we fill that into the power equation:
gives us
P = 18000 Watts. But we need kW, so we divide by 1000 to get
P = 18 kW of power.
Given data:
* The extension of the steel wire is 0.3 mm.
* The length of the wire is 4 m.
* The area of cross section of wire is,

* The young modulus of the steel is,

Solution:
The young modulus of the steel in terms of the force and extension is,

where F is the force acting on the steel wire,, l is the original length of the wire, dl is the extension of the wire, and A is the area,
Substituting the known values,

Thus, the force which produce the extension of 0.3 mm of the steel wire is 31.5 N.