Answer:
67.1%
Explanation:
Based on the chemical equation, if we determine the moles of sodium carbonate, we can find the moles of NaHCO₃ that reacted and its mass, thus:
<em>Moles Na₂CO₃ - 105.99g/mol-:</em>
6.35g * (1mol / 105.99g) = 0.0599 moles of Na₂CO₃ are produced.
As 1 mole of sodium carbonate is produced when 2 moles of NaHCO₃ reacted, moles of NaHCO₃ that reacted are:
0.0599 moles of Na₂CO₃ * (2 moles NaHCO₃ / 1 mole Na₂CO₃) = 0.1198 moles of NaHCO₃
And the mass of NaHCO₃ in the sample (Molar mass: 84g/mol):
0.1198 moles of NaHCO₃ * (84g / mol) = 10.06g of NaHCO₃ were in the original sample.
And percent of NaHCO₃ in the sample is:
10.06g NaHCO₃ / 15g Sample * 100 =
<h3>67.1%</h3>
The ions of Noble gases, <em>group VIII</em> elements have a full octet configuration on their outermost shell and as such are highly stable.
The periodic table is a systematic arrangement of elements in order of their atomic numbers into a set of 8 columns each called groups and a set of 7 rows each called a period.
Elements are arranged in different groups according to the number of Valence electrons they have.
- For instance, elements in the group I of the periodic table are highly electropositive and as such are highly reactive.
The same is evident in group 7 elements are highly electronegative and have high electron affinity and as such are unstable and reactive.
- However, Noble gases, <em>group VIII</em> elements have a full octet configuration on their outermost shell and as such are highly stable.
Consequently, the <em>Noble gases ion</em> has a stable Valence electron configuration.
Read more:
brainly.com/question/5336231
Answer:
Explanation:
The Law of Conservation of Mass is defined and explained using examples of reacting mass calculations using the law are fully explained with worked out examples using the balanced symbol equation. The method involves reacting masses deduced from the balanced symbol equation.
1.more
2.longer
3.warmer
4.northern
5.less
6.shorter
7.colder
8.southern