The gas particles move faster.
Answer: Volume of gas in the stomach, V = 0.0318L or 31.8mL
Explanation:
The number of moles of oxygen will remain constant even though the liquid oxygen will undergo a change of state to gaseous inside the person's stomach due to an increase in temperature.
<em>Number of moles of oxygen gas = mass/molar mass</em>
molar mass of oxygen gas = 32 g/mol
mass of oxygen gas = density * volume
mass of oxygen gas = 1.149 g/ml * 0.035 ml
mass of oxygen gas = 0.040215 g
Number of moles of oxygen gas = 0.0402 g/(32 g/mol)
Number of moles of oxygen gas = 0.00125 moles
<em>Using the ideal gas equation, PV=nRT</em>
where P = 1.0 atm, V = ?, n = 0.00125 moles, R = 0.082 L*atm/K*mol, T = (37 + 273)K = 310 K
<em>V = nRT/P</em>
V = (0.00125moles) * (0.082 L*atm/K*mol) * (310 K) / 1 atm
V = 0.0318L or 31.8mL
The flashlight's beam will all be refracted towards a central axis. But, this is still dependent on the type of lens that is used for the said activity. The speed of light will vary depending whether the lens is a concave or a convex lens. The exit point of the light will always head towards the central axis.
<span>1. Which variable is the independent variable and which is the dependent variable? Density vs. ethylene glycol
The independent variable would be ethylene glycol and dependent variable would be density.
A. A 25-mL volumetric flask with its stopper has a mass of 32.6341 g. The same flask filled to the line with ethylene glycol (C2H6O2, automotive antifreeze) solution has a mass of 58.0091 g. What is the density of the ethylene glycol solution?
Density = 58.0091 - 32.6341 / .025 = 1015 g/L
B. What is the molarity of the ethylene glycol solution, if the mass of ethylene glycol in the solution is 12.0439 g?
Molarity = 12.0439 ( 1 mol / 62.07 g) / 0.025 = 7.8 M</span>