Answer:
Faraday's law
, he direction of the magnetic field changes by 180º, in the polarity inversion processes, induces a voltage.
Explanation:
For this exercise let's use Faraday's law
E = - dФ / dt
Ф = B.A = B A cos θ
where B is the magnetic field, A is the area and θ is the angle between the field line and the normal to the area.
We can see that an electromotive force (voltage) is indexed when there is a variation of the field B, a variation of the area and change of the angle or when there is a combinational of them.
In this case, the magnitude of the field is constant, as the wire is rigid metal, the area is constant, but the direction of the magnetic field changes by 180º, in the polarity inversion processes, for which reason each change induces a voltage.
If a voltage is created in the ring, which has a resistance, a current is also generated in it.
Therefore the answer is If a current is created in the hoop
Winds blowing across the ocean surface push water away. Water then rises up from beneath the surface to replace the water that was pushed away. This process is known as “upwelling.”
Upwelling occurs in the open ocean and along coastlines. The reverse process, called “downwelling,” also occurs when wind causes surface water to build up along a coastline and the surface water eventually sinks toward the bottom.
Water that rises to the surface as a result of upwelling is typically colder and is rich in nutrients. These nutrients “fertilize” surface waters, meaning that these surface waters often have high biological productivity. Therefore, good fishing grounds typically are found where upwelling is common.
Answer:
c. vf is greator than v2, but less than v1
Explanation:
The principle of conservation of linear momentum states that when two or more bodies act upon one another, their total momentum remains constant.
In a system of colliding bodies the total momentum of the system just before the collision is the same as the total momentum just after the collision.
Collisions in which the kinetic energy is conserved are called elastic collision.
Collisions in which the kinetic energy is not conserved are called inelastic collisions. If the two objects stick together after the collision and move with a common velocity, the collision is said to be perfectly inelastic.
<em>The above scenario is a perfectly inelastic collision. The initial velocity of particle 1 was greater than particle 2 before collision. After collision, its velocity will reduce to a final velocity vf as it transfers some of its kinetic energy to particle 2; whereas, the velocity of particle 2 will increase to a final velocity vf as it absorbs some of the kinetic energy of particle 1.</em>
Therefore,
a. vf = v2 is wrong because vf is greater than v2
b. vf is less than v2 is wrong because vf is greater than v2
c. vf is greater than v2, but less than v1 is correct.
d. vf = v1 is wrong because vf is less than v1
The answer is C. The mass of the platinum sample is greater than the mass of the lead sample. As I explained in a previous answer, if they are the same volume, but one is heavier, then it must be more dense. In this particular example, the platinum is more dense than the lead, and therefore has more mass.