Answer:
In the grapher: The stops are marked with a flat line, velocity with a diagonal line, and acceleration with a curve.
Average speed= Total distance/Total time
Explanation:
1) Focal length
We can find the focal length of the mirror by using the mirror equation:

(1)
where
f is the focal length

is the distance of the object from the mirror

is the distance of the image from the mirror
In this case,

, while

(the distance of the image should be taken as negative, because the image is to the right (behind) of the mirror, so it is virtual). If we use these data inside (1), we find the focal length of the mirror:

from which we find

2) The mirror is convex: in fact, for the sign convention, a concave mirror has positive focal length while a convex mirror has negative focal length. In this case, the focal length is negative, so the mirror is convex.
3) The image is virtual, because it is behind the mirror and in fact we have taken its distance from the mirror as negative.
4) The radius of curvature of a mirror is twice its focal length, so for the mirror in our problem the radius of curvature is:
Errrrr, it has 80.
80 is the correct answer
Answer:
A) The sum of the kinetic energy and the gravitational potential energy changes by an amount equal to the energy dissipated by friction,
Explanation:
- The kinetic energy is the energy that the object has and is defied by the work that is needed to accelerate the body.
- The gravitational potential is a mechanism by which an equal amount of energy is being transferred per unit mass that is needed for the object to move from the specific location.
- Hence when the sled moves down the hill with the force of gravity it has negligible resistance as an equal amount of energy is dissipated.
Refraction is
the bending of the waves which is result of the fact that different parts of
the wave reach the water with different speeds because of the angle approaching
the shore.
<span>The
wave refraction disperses the wave energy in quiet water areas and sand is
deposited.<span> </span></span>