The speed of the satellite moving in a stable circular orbit about the Earth is 5,916.36 m/s.
<h3>
Speed of the satellite</h3>
v = √GM/r
where;
- M is mass of Earth
- G is universal gravitation constant
- r is distance from center of Earth = Radius of earth + 4930 km
v = √[(6.626 x 10⁻¹¹ x 5.97 x 10²⁴) / ((6371 + 4930) x 10³)]
v = 5,916.36 m/s
Thus, the speed of the satellite moving in a stable circular orbit about the Earth is 5,916.36 m/s.
Learn more about speed here: brainly.com/question/6504879
#SPJ1
Answer:
The final kinetic energy of the Helium nucleus (alpha particle) after been scattered through an angle of 120° is
8.00 x 10-13J
Explanation:
In Rutherford Scattering experiment, the collision of the helium nucleus with the gold nucleus is an ELASTIC COLLISION. This means that the kinetic energy is conserved ( The same before and after the collision).
Thus, the final kinetic energy of the helium nucleus is the same as initial kinetic energy (8.00 x 10^-13Joules)
Although, the kinetic energy is converted to potential energy in Coulomb's law equation.
That is,
1/2(mv^2) = (K* q1q2)/r
Where m is the mass of helium nucleus, v is its colliding velocity, k is electrostatic constant, q1 is the charge on helium nucleus, q2 is the charge on gold nucleus, r is impact parameter
Answer:
it will remain same because mass of the body is constant everywhere
Answer: Option (D) is the correct answer.
Explanation:
The given elements Li, C and F are all second period elements. So, when we move from left to right across a period then there occurs increase in number of valence electrons as there occurs increase in total number of electrons.
So, it means more electrons are added to the same energy level.
Thus, we can conclude that a property of valence electrons for each element is located in the same energy level is common in the given elements.
Answer:
Yes it would be different on Earth and the moon