Answer:
c. 48 cm/s/s
Explanation:
Anna Litical and Noah Formula are experimenting with the effect of mass and net force upon the acceleration of a lab cart. They determine that a net force of F causes a cart with a mass of M to accelerate at 48 cm/s/s. What is the acceleration value of a cart with a mass of 2M when acted upon by a net force of 2F?
from newtons second law of motion ,
which states that change in momentum is directly proportional to the force applied.
we can say that
f=m(v-u)/t
a=acceleration
t=time
v=final velocity
u=initial velocity
since a=(v-u)/t
f=m*a
force applied is F
m =mass of the object involved
a is the acceleration of the object involved
f=m*48.........................1
in the second case ;a mass of 2M when acted upon by a net force of 2F
f=ma
a=2F/2M
substituting equation 1
a=2(M*48)/2M
a=. 48 cm/s/s
<span>2.5 m/s going upward.
In the situation described, Erica and Danny undergo a non-elastic collision which will conserve their combined momentum. Since Erica is stationary, her momentum is 0. And since Danny is moving upward at 4.7 m/s his momentum is 43 kg * 4.7 m/s = 202.1 kg*m/s. Assuming that both Erica and Danny will be moving as a joined system, their combined mass is 38 kg + 43 kg = 81 kg. Since the momentum will be the same, their velocity will be 202.1 kg*m/s / 81 kg = 2.495061728 m/s. Since we only have 2 significant figures in the provided data, rounding the result to 2 significant figures gives a velocity of 2.5 m/s going upward.</span>
What that means is the atom is so radioactive that the nucleus is unstable.
From Newton's second law, we know F = ma, where a is the acceleration and m is the mass in kg.
F = 1000kg * 9.8m/s = 9800N
F = 9800 N
Hope this helps!