Explanation:
The kinetic energy is said to be possessed due to the motion of the object. An object at rest will have zero kinetic energy and if it is in motion it will have some kinetic energy. The mathematical expression for kinetic energy is given by :
...........(1)
Where
m is the mass of the object
v is the velocity of object
It is clear form expression (1) that the kinetic energy of the object is directly proportional to the mass and velocity of an object.
So, the hypothesis for the mass and kinetic energy can be written as " when the mass of the object increases, its kinetic energy also increases because there exists a direct relationship between the mass and the kinetic energy of the object".
Answer:
230kg would be the best answer
Explanation:
Answer:
Y = 3.87 x 10⁻³ m = 3.87 mm
Explanation:
This problem can be solved by using Young's double-slit experiment formula:

where,
Y = fringe spacing = ?
L = slit to screen distance = 2 m
λ = wavelength of light = 580 nm = 5.8 x 10⁻⁷ m
d = slit width = 0.3 mm = 3 x 10⁻⁴ m
Therefore,

<u>Y = 3.87 x 10⁻³ m = 3.87 mm</u>
object's weight is the independent of mass and gravity .
Weight = mass × gravity
Answer:
The value is 
Explanation:
From the question we are told that
The initial speed of the roller coaster is 
The length of the hill is 
The acceleration of the roller coaster is 
Generally the acceleration is mathematically represented as

Here
is the initial time which is equal to zero
is the final velocity which is mathematically represented as

So




Solving this using quadratic formula we obtain


Generally time cannot be negative so

Generally the final velocity is mathematically represented as

