Quantitative measurements are numerical values, they involve amounts and units like measuring things. Qualitative observations appeal to the five senses, like what does the interaction look and sound like
Answer:
Law of conservation of mass
Ernest Rutherford
Explanation:
The basic law of behavior of matter that states that "mass is neither created nor destroyed in a chemical reaction or physical change".
This is the law of conservation of mass. It is very essential in understanding most chemical reaction. Also, in quantitative analysis, this law is pivotal.
Ernest Rutherford was the scientist that stated that the nucleus is made up of positive charge. It was not until James Chadwick in 1932 discovered the neutron that we had an understanding of this nuclear component.
Rutherford surmised from his experiment that because most the alpha particles passed through the thin Gold foil and just a tiny fraction was deflected back, the atom is made is made up of small nucleus that is positively charged.
Answer:
1.Respiration of animals and plants.
2.The burning of fossil fuels.
3.Bacteria decompose corpses.
Answer:
Distribution coefficient: 4.79
Explanation:
Distribution coefficient is the ratio between equilibrium concentration of non-aqueous phase and aqueous phase where both solvents are inmiscible. The equation for the problem is:
Distribution coefficient: Concentration in chloroform / Concentration in Water
<em>Concentration in water: 2.59mg / 30mL = 0.08633mg/mL</em>
<em>Concentration in chloroform: (15mg-2.59mg) / 30mL = 0.4137mg/mL</em>
<em />
Distribution coefficient: 0.4137mg/mL / 0.08633mg/mL
<h3>Distribution coefficient: 4.79</h3>
The amount, in mg, of CO present in the room will be 191,520 mg.
<h3>Stoichiometric problem</h3>
The concentration of the gas in the room is 5.7 x mg/cm3.
The dimension of the room is 3.5 m x 3.0 m x 3.2 m. This is equivalent to 350 cm x 300 cm x 320 cm.
We can obtain the volume of the room as:
350 x 300 x 320 = 33,600,000 cm3
The concentration is in mg/cm3, meaning that it is mass/volume.
Thus:
mass = concentration x volume = 5.7 x mg/cm3 x 33,600,000 cm3
= 191,520 mg
The mass of CO in the room is 191,520 mg
More on stoichiometric problems can be found here: brainly.com/question/14465605
#SPJ1