Answer:
atomic mass of X is 48.0 amu
Explanation:
Let y be the atomic mass of X
Molar mass of O_2 is = 2×16 = 32 g / mol
X + O2 -----> XO_2
According to the equation ,
y g of X reacts with 32 g of O_2
24 g of X reacts with Z g of O_2
Z = ( 32×24) / y
But given that 24.0 g of X exactly reacts with 16.0 g of O_2
So Z = 16.0
⇒ (32×24) / y = 16.0
⇒ y = (32×24) / 16
y= 48.0
So atomic mass of X is 48.0 amu
Answer:
I cant answer B, but I can answer A, and I don't think it is a scientifically reasonable plan.
Explanation:
The bag of sand weighs less than the gold statue, and yes the bag of sand seems like it would keep the trap from activating, but you would scientifically have to put something that was the same weight as the gold statue on the pedestal that the statue is on.
Answer:
The change in entropy of the surrounding is -146.11 J/K.
Explanation:
Enthalpy of formation of iodine gas = 
Enthalpy of formation of chlorine gas = 
Enthalpy of formation of ICl gas = 
The equation used to calculate enthalpy change is of a reaction is:
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(2\times \Delta H_f_{(ICl)})]-[(1\times \Delta H_f_{(I_2)})+(1\times \Delta H_f_{(Cl_2)})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%282%5Ctimes%20%5CDelta%20H_f_%7B%28ICl%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20H_f_%7B%28I_2%29%7D%29%2B%281%5Ctimes%20%5CDelta%20H_f_%7B%28Cl_2%29%7D%29%5D)
![=[2\times 17.78 kJ/mol]-[1\times 0 kJ/mol+1\times 62.436 kJ/mol]=-26.878 kJ/mol](https://tex.z-dn.net/?f=%3D%5B2%5Ctimes%2017.78%20kJ%2Fmol%5D-%5B1%5Ctimes%200%20kJ%2Fmol%2B1%5Ctimes%2062.436%20kJ%2Fmol%5D%3D-26.878%20kJ%2Fmol)
Enthaply change when 1.62 moles of iodine gas recast:

Entropy of the surrounding = 

1 kJ = 1000 J
The change in entropy of the surrounding is -146.11 J/K.
I think the charge is +2
Hope this helps
Answer:
Balanced equation have equal number of atoms of different elements in the side of reactants and products.