Answer:
0.033 M
Explanation:
Let's consider the neutralization reaction between NaOH and HCl.
NaOH + HCl → NaCl + H₂O
0.4 L of 0.1 M NaOH were used. The reacting moles of NaOH are:
0.4 L × 0.1 mol/L = 0.04 mol
The molar ratio of NaOH to HCl is 1:1. The reacting moles of HCl are 0.04 moles.
0.04 moles of HCl are in 1.2 L. The molarity of HCl is:
M = 0.04 mol / 1.2 L = 0.033 M
Answer:
2H+(aq) + 2OH-(aq) → 2H2O(l)
Explanation:
Step 1: The balanced equation
2HCl(aq)+Ca(OH)2(aq) → 2H2O(l)+CaCl2(aq)
This equation is balanced, we do not have the change any coefficients.
Step 2: The netionic equation
The net ionic equation, for which spectator ions are omitted - remember that spectator ions are those ions located on both sides of the equation - will.
2H+(aq) + 2Cl-(aq) + Ca^2+(aq) + 2OH-(aq) → 2H2O(l) + Ca^2+(aq) + 2Cl-(aq)
After canceling those spectator ions in both side, look like this:
2H+(aq) + 2OH-(aq) → 2H2O(l)
Answer:
Explanation:
In general, an increase in pressure (decrease in volume) favors the net reaction that decreases the total number of moles of gases, and a decrease in pressure (increase in volume) favors the net reaction that increases the total number of moles of gases.
Δn= b - a
Δn= moles of gaseous products - moles of gaseous reactants
Therefore, <u>after the increase in volume</u>:
- If Δn= −1 ⇒ there are more moles of gaseous reactants than gaseous products. The equilibrium will be shifted towards the products, that is, from left to right, and K>Q.
- If Δn= 0 ⇒ there is the same amount of gaseous moles, both in products and reactants. The system is at equilibrium and K=Q.
- Δn= +1 ⇒ there are more moles of gaseous products than gaseous reactants. The equilibrium will be shifted towards the reactants, that is, from right to left, and K<Q.
If an atom gains an electron and gets a negative charge because of it, it is a negatively charge ion AKA an anion.