If the current takes him downstream we must find the resultant vector of the velocities:

Then if the river is 3000 m-wide the swimmer will have to pass:
1.3520747 · 300 = 4056.14 m t = 4056.14 m : 1 m/s
a ) It takes
4056.15 seconds ( 1 hour 7 minutes and 36 seconds ) to cross the river.
b ) 0.91 · 3000 =
2730 mHe will be 2730 m downstream.
A. Move 2 m east and then 12 m east; displacement is 14 m east and the distance is 14 m
B. Move 10 m east and then 12 m west, the displacement is 2 m west and the distance is 22 m.
C. Move 8 m west and then 16 m east; the displacement is 8 m east and the distance is 24 m
D. Move 12 m west and then 8 m east; the displacement is 4 m and the distance is 20 m
Answer:
215955.06 m/s^2
Explanation:
length of barrel, s = 0.89 m
initial velocity of the bullet, u = 0 m/s
Final velocity of the bullet, v = 620 m/s
Let a be the acceleration of the bullet in the barrel
Use third equation of motion, we get


a = 215955.06 m/s^2
Thus, the acceleration of the bullet inside the barrel is 215955.06 m/s^2.
Answer:
just guys
Explanation:
and if not i need how old you are sorry just trying to be safe
Answer:
When you toss a rolled up sock across the room, it travels faster as it becomes round and has more weight added on it and this causes the sock to travel in the direction you wish and this gives you a high chance of the sock going straight into the laundry basket, no matter how far away you are.
On the other hand, throwing a sock without rolling it up will cause the sock to just flat down as you throw it. It will travel at a low speed because it has no weight on it since it is flat, and if you try to throw it, it will atleast land 21 cm away from you. About a 0% chance of it getting in the basket.
Hope this helped! =>