The endoplasmic rectiulum... hope this helps!
Answer:
26.8 seconds
Explanation:
To solve this problem we have to use 2 kinematics equations: *I can't use subscripts for some reason on here so I am going to use these variables:
v = final velocity
z = initial velocity
x = distance
t = time
a = acceleration


First let's find the final velocity the plane will have at the end of the runway using the first equation:


Now we can plug this into the second equation to find t:


Then using 3 significant figures we round to 26.8 seconds
Answer:
Some elements are reactive because the outermost energy levels of their atoms are only partially filled. Therefore, these atoms can easily gain or lose electrons to form ions. The atoms of nonreactive elements have filled outermost energy levels
Explanation:
hope this answers your ?
Answer:
s = 20 m
Explanation:
given,
mass of the roller blader = 60 Kg
length = 10 m
inclines at = 30°
coefficient of friction = 0.25
using conservation of energy
u = 9.89 m/s
Using second law of motion
ma =μ mg
a = μ g
a = 0.25 x 9.8
a = 2.45 m/s²
Using third equation of motion ,
v² - u² = 2 a s
0² - 9.89² = 2 x 2.45 x s
s = 20 m
the distance moved before stopping is 20 m
True, the path of the ball, as observed from the train window, will be a horizontal straight line.
An object projected from a certain height has a parabolic path when observed from a fixed point.
However, if the reference point is moving at the same velocity as the object, the path of the object's motion appears to be a straight line.
When the ball is released from the window of the train, it will move at the same constant velocity as the train, and the path of the ball's motion observed from the train window will be a straight line.
Thus, we can conclude that the given statement is true. The path of the ball, as observed from the train window, will be a horizontal straight line.
Learn more about path of motion of objects here: brainly.com/question/82610