First, calculate how long the ball is in midair. This will depend only on the vertical displacement; once the ball hits the ground, projectile motion is over. Since the ball is thrown horizontally, it originally has no vertical speed.
t = time vi = initial vertical speed = 0m/s g = gravity = -9.8m/s^2 y = vertical displacement = -45m
y = .5gt^2 [Basically, in this equation we see how long it takes the ball to fall 45m] -45m = .5 (-9.8m/s^2) * t^2 t = 3.03 s
Now we know that the ball is midair for 3.03s. Since horizontal speed is constant we can simply use:
x = horizontal displacement v = horizontal speed = 25m/s t = time = 3.03s
x = v*t x = 25m/s * 3.03s = 75.76 m Thus, the ball goes about 75 or 76 m from the base of the cliff.
Rarefraction.
Crest- tallest spot on transverse wave.
Trough- shortest point on transverse wave.
Compression - spot on a compressional wave where the waves are closer together.
Rarefraction - spot on a compressional wave where the waves are farther apart.
B.
technically it would depend if the resistors were in series or parallel but B is the answer.
Answer:
6.214g/cm³
Explanation:
The question is on density of a material
Density=mass/volume
Given, mass=87grams and volume= 14 cm³ density=?
Density=m/v 87/14 =6.214g/cm³