The people of Florida are closest to the equator and also near 2 different bodies of water and have rivers running thru them as well salt water and fresh water. they need alot of freshwater due to monsoon seasons, hurricanes etc, its humid and hot there so naturally you need to water more often and frequently.
Answer:
A box sits stationary on a ramp
Explanation:
Static friction is a force which keeps an object at rest as it is in the case of the box. It has to be overcome for the object to be set into motion.
Static force of friction is calculated as follows:
F= μη
F is static force of friction.
μ is the coefficient of static friction.
η is the normal force.
<u>Answer:</u>
<h2>
All the waves are pertubations that propagate (transport) energy.</h2><h2>
</h2>
Nevertheless, they have some differences:
1. Light waves are<u> electromagnetic waves</u>, while sound and water waves are <u>mechanical waves</u>, this is the first and principal difference.
2. Electromagnetic waves can<u> propagate in vacuum</u> (they do not need a medium or material), but mechanical waves obligatory need a material to propagate
3. Light waves are always <u>transversal waves</u>, this means <u>the oscillatory movement is in a direction that is perpendicular to the propagation</u>; but mechanical waves may be both: <u>longitudinal waves</u> (the oscillation occurs in the same direction as the propagation) or transversal waves.
4. Electromagnetic waves propagates at a <u>constant velocity</u> (Light velocity) while the velocity of mechanical waves will depend on the type of wave and the <u>density</u> of the medium or material.
5. <u>Mechanical waves</u> are characterized by the regular variation of a single magnitude, while <u>electromagnetic waves</u> are characterized by the variation of two magnitudes: the electric field and the magnetic field
6. <u>Water waves</u> are 2-dimensional waves, while the <u>light and the sound</u> are tridimensional spherical waves
7. Light waves <u>transports energy in the form of </u><u>radiation</u>, while mechanical waves t<u>ransport energy with </u><u>material</u>
Answer:

Explanation:
We need to find the frequency of green light having wavelength o
. It can be calculated as follows :

So, the required frequency of green light is equal to
.