Data:

n (Wave node)
V (Wave belly)
L (Wave length)
<span>The number of bells is equal to the number of the harmonic emitted by the string.
</span>

Wire 2 → 2º Harmonic → n = 2







Wire 1 → 1º Harmonic or Fundamental rope → n = 1



If, We have:
V = 42L
Soon:



Answer:
<span>The fundamental frequency of the string:
</span>
21 Hz
Question: What is the frequency of a wave that has a wave speed of 120 m/s and a wavelength of 0.40 m?
Answer: The equation that relates frequency of a wave to a waves speed and wavelength is Speed of Wave= Frequency X Wavelength. Since you are given speed and wavelength, you plug those two known numbers into the equation, 120= Frequency X 0.40. You then divide 120 by .4 to get your frequency of 300.
Explanation: this might help for
In order to calculate the amount of energy required, we must first check the latent heat of vaporization of water from literature. The latent heat of vaporization of any substance is the amount of energy required per unit mass to convert that substance from a solid to a liquid. For water this is 2,260 J/g. We now use the formula:
Energy = mass * latent heat
Q = 50 * 2,260
Q = 113,000 J
113,000 Joules of heat energy are required.
Answer: when a object gets slowed down, it's force is either going into friction and drag, if it's on the ground, and weight+drag+friction, if it's in the air.
Explanation:
Only the tiny command module survives to return to Earth. The Saturn V rocket's first stage carries 203,400 gallons (770,000 liters) of kerosene fuel and 318,000 gallons (1.2 million liters) of liquid oxygen needed for combustion