Answer:

Explanation:
When a spring is compressed, the force exerted by the spring is given by:

where
k is the spring constant
x is the compression of the spring
In this problem we have:
k = 52 N/m is the spring constant
x = 43 cm = 0.43 m is the compression
Therefore, the force exerted by the spring on the dart is

Now we can apply Newton' second law of motion to calculate the acceleration of the dart:

where
F = 22.4 N is the force exerted on the dart by the spring
m = 75 g = 0.075 kg is the mass of the dart
a is its acceleration
Solving for a,

Answer:
d) 1.2 mT
Explanation:
Here we want to find the magnitude of the magnetic field at a distance of 2.5 mm from the axis of the coaxial cable.
First of all, we observe that:
- The internal cylindrical conductor of radius 2 mm can be treated as a conductive wire placed at the axis of the cable, since here we are analyzing the field outside the radius of the conductor. The current flowing in this conductor is
I = 15 A
- The external conductor, of radius between 3 mm and 3.5 mm, does not contribute to the field at r = 2.5 mm, since 2.5 mm is situated before the inner shell of the conductor (at 3 mm).
Therefore, the net magnetic field is just given by the internal conductor. The magnetic field produced by a wire is given by

where
is the vacuum permeability
I = 15 A is the current in the conductor
r = 2.5 mm = 0.0025 m is the distance from the axis at which we want to calculate the field
Substituting, we find:

This question is based on the fundamental assumption of vector direction.
A vector is a physical quantity which has magnitude as well direction for its complete specification.
The magnitude of a physical quantity is simply a numerical number .Hence it can not be negative.
A negative vector is a vector which comes into existence when it is opposite to our assumed direction with respect to any other vector. For instance, the vector is taken positive if it is along + X axis and negative if it is along - X axis.
As per the first option it is given that a vector is negative if its magnitude is greater than 1. It is not correct as magnitude play no role in it.
The second option tells that the magnitude of the vector is less than 1. Magnitude can not be negative. So this is also wrong.
Third one tells that a vector is negative if its displacement is along north. It does not give any detail information about the negativity of a vector.
In a general sense we assume that vertically downward motion is negative and vertically upward is positive. In case of a falling object the motion is vertically downward. So the velocity of that object is negative .
So last option is partially correct as the vector can be negative depending on our choice of co-ordinate system.