Answer:
Lo lamento tanto, pero no puedo entender la pregunta puedes decirme cual es para poderte ayudar. :)
Step-by-step explanation:
Answer:
The 95% confidence interval for the true population mean dog weight is between 62.46 ounces and 71.54 ounces.
Step-by-step explanation:
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:

Now, we have to find z in the Ztable as such z has a pvalue of
.
So it is z with a pvalue of
, so 
Now, find M as such

In which
is the standard deviation of the population and n is the size of the sample.

The lower end of the interval is the sample mean subtracted by M. So it is 67 - 4.54 = 62.46 ounches.
The upper end of the interval is the sample mean added to M. So it is 67 + 4.54 = 71.54 ounces.
The 95% confidence interval for the true population mean dog weight is between 62.46 ounces and 71.54 ounces.
Answer: Yes
Step-by-step explanation:
You do yes + yes = yes
Yes is the answer xD
Answer:
Around 34.14% of the cookies are between 11.32 and 11.35 grams.
Step-by-step explanation:
In a normal distribution around 68.28% of the values are around minus one to one standard deviation. In this case we want to know the percentage of values that are between zero and one standard deviation, therefore the percentage of values that are in that range is given by 68.28% / 2 , which is equal to 34.14%.
Yes, (2,0) is a solution to y<2x+4