Answer:
True.
Explanation:
A nanometer is a unit of mass, whereas a nanosecond is a unit of time. To convert 1.3 hours to minute, you would multiply by 1 h / 60 min. Kilometer is a unit of length, whereas kilogram is a unit of mass. True.
Density <em>ρ</em> is mass <em>m</em> per unit volume <em>v</em>, or
<em>ρ</em> = <em>m</em> / <em>v</em>
Solving for <em>v</em> gives
<em>v</em> = <em>m</em> / <em>ρ</em>
So the given object has a volume of
<em>v</em> = (130 g) / (65 g/cm³) = 2 cm³
Answer:
the answer to the question is the part that is reflected by clouds and atmosphere 26%
Explanation:
We want to find the statement that is proven by the fact that the balls reach the same height.
A isn't supported by the evidence. Balls can reach the same height without having the same initial speed.
B isn't supported by the evidence. Balls can reach the same height without having the same launch angle.
C is supported. Projectiles spend the same amount of time going up as they do coming down, so if two projectiles reach the same height, then they must spend the same amount of time in the air.
D isn't supported by the evidence. Balls thrown at the same speed and complementary angles have the same range but different heights.
E isn't supported by the evidence. The mass of the ball doesn't affect the height.
Sum the vector components:
Dx = 225* Cos(180)+ 78*Cos(225)= -280.154 km
Dy = 225* Sin(180)+ 78*Sin(225) = -55.154 km
displacement:
Sqrt(Dx^2+Dy^2) = 285.532 km
Arctan(Dy/Dx) = 191.137degrees CCW
OR:
11.137 degrees South of West