1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nikolay [14]
3 years ago
10

A basketball player jumps straight up for a ball. To do this, he lowers his body 0.310 m and then accelerates through this dista

nce by forcefully straightening his legs. This player leaves the floor with a vertical velocity sufficient to carry him 0.940 m above the floor. (a) Calculate his velocity (in m/s) when he leaves the floor. m/s (b) Calculate his acceleration (in m/s2) while he is straightening his legs. He goes from zero to the velocity found in part (a) in a distance of 0.310 m. m/s2 (c) Calculate the force (in N) he exerts on the floor to do this, given that his mass is 106 kg. N
Physics
1 answer:
Nastasia [14]3 years ago
8 0

Answer:A)u =4.295m/s  , B)a = 29.746m/s²   C) F=3,153N

Explanation:

Using the kinematic expression  

v² = u² - 2as

where

u = initial velocity

v = final velocity

s = distance

g = acceleration due to gravity .

Given that he reaches a height of 0.940 m above the floor,

the final velocity  = 0

Here, acceleration due to gravity is acting in  opposite the initial direction of motion. So, a=-9.81 m/s.

v² = u² + 2as

0² - u² = 2 (- 9.81) × 0.940

- u² = 2 × - 9.81 × 0.920

- u² = -18.4428

cancelling the minus in both sides , we have that  

u² = 18.4428

u = √18.4428

u =4.295m/s

(b) His acceleration (in m/s2) while he is straightening his legs. He goes from zero to the velocity found in part (a) in a distance of 0.310 m. m/s2

Using v² = u² + 2as

where u = initial speed of basketball player before lengthening = 0 m/s,

v = final speed of basketball player after lengthening =  4.295m/s,

a = acceleration while  straightening his legs

s = distance moved during lengthening = 0.310m

v² = u² + 2as  

 a = (v² - u²)/2s

a = (4.29m/s)² - (0 m/s)²)/(2 × 0.310m)

a = (18.4428 m²/s² - 0 m²/s²)/(0.62 m)

a = (18.4428 m²/s²/(0.62 m)

a = 29.746m/s²

c) The force (in N) he exerts on the floor to do this, given that his mass is 106 kg. N

Force= mass x acceleration.

F = 106 kg X 29.746m/s²

 F = 3,153.076 rounded to  3,153N

You might be interested in
A force that needs to touch something to affect it
bija089 [108]


I would say friction because it requires to surfaces in order for the force to take place

correct me if I'm wrong.

8 0
3 years ago
Read 2 more answers
Heyy! i’ll give brainliest please help
taurus [48]
The answer is south
7 0
2 years ago
Determine the approximate force (N) used to pull a sled up a 400 m hill using 1900 J of work.
Sergeu [11.5K]
The work done to pull the sled up to the hill is given by
W=Fd
where
F is the intensity of the force
d is the distance where the force is applied.

In our problem, the work done is W=1900 J and the distance through which the force is applied is d=400 m, so we can calculate the average force by re-arranging the previous equation and by using these data:
F= \frac{W}{d}= \frac{1900 J}{400 m} = 4.75 N \sim 5 N
4 0
3 years ago
a certain car travels 20 km east then turns south for 13 km finally the car turns east again for 6 km
aliya0001 [1]

a^2+b^2=c^2

20km^2+13km^2=c^2

400km^2+169km^2=c^2

23.853720...km

7 0
3 years ago
Read 2 more answers
In young’s double slit experiment, the measured fringe width is 0.5 mm for a Sodium light of 589 nm at a distance of 1.5 m. A br
Levart [38]

Answer:

(A).  The order of the bright fringe is 6.

(B). The width of the bright fringe is 3.33 μm.

Explanation:

Given that,

Fringe width d = 0.5 mm

Wavelength = 589 nm

Distance of screen and slit D = 1.5 m

Distance of bright fringe y = 1 cm

(A) We need to calculate the order of the bright fringe

Using formula of wavelength

\lambda=\dfrac{dy}{mD}

m=\dfrac{d y}{\lambda D}

Put the value into the formula

m=\dfrac{1\times10^{-2}\times0.5\times10^{-3}}{589\times10^{-9}\times1.5}

m=5.65 = 6

(B). We need to calculate the width of the bright fringe

Using formula of width of fringe

\beta=\dfrac{yd}{D}

Put the value in to the formula

\beta=\dfrac{1\times10^{-2}\times0.5\times10^{-3}}{1.5}

\beta=3.33\times10^{-6}\ m

\beta=3.33\ \mu m

Hence, (A).  The order of the bright fringe is 6.

(B). The width of the bright fringe is 3.33 μm.

3 0
3 years ago
Other questions:
  • A loaf of bread is removed from an oven and is left sitting in the kitchen to cool. Its temperature t minutes after being remove
    12·1 answer
  • Which of the following is an element?
    10·1 answer
  • Convert the following to scientific notation: 45,700. A. 4.57 × 103 B. 4.57 × 104 C. 4.57 × 10-3 D. 4.57 × 10-4
    15·1 answer
  • Tim jogs a distance of 7.2 km to the west. Then he turns south and jogs 1.4 km. West is the resultant if Tim's jog back to the b
    6·1 answer
  • What are two ways you can change atomic mass
    13·1 answer
  • A car traveling at 37m/s starts to decelerate steadily. It comes to a complete stop in 15 seconds. What is it’s acceleration
    15·1 answer
  • If<br> an object has a volume of 2.5 mL and a mass of 10 g, what is the density of the object?
    11·2 answers
  • Qual e sua idade<br> cgreg
    5·1 answer
  • Which of the following correctly describes the law of conservation of matter?
    7·1 answer
  • The blackbody curve for a star named Zeta is shown below. The most intense radiation for this star occurs in what spectral band?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!