1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kondaur [170]
3 years ago
5

Which element of variation would not be affected by adding the data value 15 to the data set {3, 5, 6, 8, 9, 10, 13, 14}?

Physics
1 answer:
Anna11 [10]3 years ago
4 0
The answer to this would be 15
You might be interested in
Is it possible to have a charge of 5 x 10-20 C? Why?
ruslelena [56]

1) No

2) Yes

3) No

4) Equal and opposite

5) 32400 N

6) Repulsive

7) The electric force is 2.3\cdot 10^{39} times bigger than the gravitational force

Explanation:

1)

In nature, the minimum possible charge that an object can have is the charge of the electron, which is called fundamental charge:

e=1.6\cdot 10^{-19}C

Electrons are indivisible particles (they cannot be separated), this means that an object can have at least the charge equal to the charge of one electron (in fact, it cannot have a charge less than e, because it would meant that the object has a "fractional number" of electrons).

In this problem, the object has a charge of

Q=5\cdot 10^{-20}C

If we compare this value to e, we notice that Q, so no object can have a charge of Q.

2)

As we said in part 1), an object should have an integer number of electrons in order to be charged.

This means that the charge of an object must be an integer multiple of the fundamental charge, so we can write it as:

Q=ne

where

Q is the charge of the object

n is an integer multiple

e is the fundamental charge

Here we have

Q=2.4\cdot 10^{-18}C

Substituting the value of e, we find n:

n=\frac{Q}{e}=\frac{2.4\cdot 10^{-18}}{1.6\cdot 10^{-19}}=15

n is integer, so this value of the charge is possible.

3)

We now do the same procedure for the new object in this part, which has a charge of

Q=2.0\cdot 10^{-19}C

Again, the charge on this object can be written as

Q=ne

where

n is the number of electrons in the object

Using the value of the fundamental charge,

e=1.6\cdot 10^{-19}C

We find:

n=\frac{Q}{e}=\frac{2.0\cdot 10^{-19}}{1.6\cdot 10^{-19}}=1.25

n is not integer, so this value of charge is not possible, since an object cannot have a fractional number of electrons.

4)

To solve this part, we use Newton's third law of motion, which states that:

"When an object A exerts a force on an object B (Action force), then object B exerts an equal and opposite force on object A (reaction force)".

In this problem, we have two objects:

- A charge Q

- A charge 5Q

Charge Q exerts an electric force on charge 5Q, and we can call this action force. At the same time, charge 5Q exerts an electric force on charge Q (reaction force), and according to Newton's 3rd law, the two forces are equal and opposite.

5)

The magnitude of the electric force between two single-point charges is

F=k\frac{q_1 q_2}{r^2}

where

k is the Coulomb's constant

q1, q2 are the two charges

r is the separation between the two charges

In this problem we have:

q_1=+4.5\cdot 10^{-6}C is charge 1

q_2=+7.2\cdot 10^{-6}C is charge 2

r = 0.30 cm = 0.003 m is the separation

So, the electric force  between the two charges is

F=(9\cdot 10^9)\frac{(4.5\cdot 10^{-6})(7.2\cdot 10^{-6})}{(0.003)^2}=32400 N

6)

The electric force between two charged objects has direction as follows:

- If the two objects have charges of opposite signs (+ and -), the force between them is attractive

- If the two objects have charges of same sign (++ or --), the force between them is repulsive

In this problem, the two charges are:

q_1=+4.5\cdot 10^{-6}C is charge 1

q_2=+7.2\cdot 10^{-6}C is charge 2

We see that the two charges have same sign: therefore, the force between them is repulsive.

7)

The electric force between the proton and the electron in the atom can be written as

F_E=k\frac{q_1 q_2}{r^2}

where

q_1 = q_2 = e = 1.6\cdot 10^{-19}C is the magnitude of the charge of the proton and of the electron

r=5.3\cdot 10^{-11} m is the separation between them

So the force can be rewritten as

F_E=\frac{ke^2}{r^2}

The gravitational force between the proton and the electron can be written as

F_G=G\frac{m_p m_e}{r^2}

where

G is the gravitational constant

m_p = 1.67\cdot 10^{-27}kg is the proton mass

m_e=9.11\cdot 10^{-27}kg is the electron mass

Comparing the 2 forces,

\frac{F_E}{F_G}=\frac{ke^2}{Gm_p m_e}=\frac{(9\cdot 10^9)(1.6\cdot 10^{-19})^2}{(6.67\cdot 10^{-11})(1.67\cdot 10^{-27})(9.11\cdot 10^{-31})}=2.3\cdot 10^{39}

8 0
3 years ago
Calculate the acceleration of a mobile that at 4s is 32m from the origin, knowing that its initial speed is 10m / s.
ehidna [41]

Answer:

5.5 m/s^2

Explanation:

I believe this is the answer > using the formula a= v-v0/t

Hope this helps!

7 0
3 years ago
Read 2 more answers
Pls answer it ASAP I need it today
Lapatulllka [165]
Detergents are special, powerful cleansers that can break up dirt, oils, and grease in clothing or on dishes.

Cleaning solvents are used to remove oil, grease, solder flux, and other contaminants.

Acid cleaners are generally used to remove mineral deposits and are useful for descaling dishwashers or removing rust from restroom facilities.

Abrasive uses
* Buffing.
* Honing.
* Drilling.
* Grinding.
* Sanding.
* Polishing.
* Cutting.
* Sharpening.
4 0
2 years ago
What is a disadvantage of using nuclear power to produce electricity?
MrRa [10]

Question:

What is a disadvantage of using nuclear power to produce electricity?

Answer:

Disadvantages of Nuclear Power

The further implementations of nuclear power are limited because although nuclear energy does not produce CO2 the way fossil fuels do, there is still a toxic byproduct produced from uranium-fueled nuclear cycles: radioactive fission waste.

7 0
3 years ago
Read 2 more answers
A projectile is launched with an initial speed of 60.0 m/s at an angle of 30.0° above the horizontal. The projectile lands on a
vodka [1.7K]

Answer:

51.96 m/s^-1

Explanation:

a) see the attachment

b) As we know the velocity of the projectile has two component, horizontal velocity v_ox. and vertical velocity v_oy as shown in the figure. At the highest point of the trajectory, the projectile has only horizontal velocity and vertical velocity is zero. Therefore at the highest point of the trajectory, the velocity of the projectile will be  

v_ox=v_o*cosФ

       =60*cos (30)

      = 51.96 m/s^-1

3 0
3 years ago
Read 2 more answers
Other questions:
  • Jamie hears a high-pitched sound that then changes to a low-pitched sound. What is most likely occurring?
    13·2 answers
  • A __________ has distinct properties and composition that never vary. A) solution B) molecule C) pure substance D) heterogeneous
    7·2 answers
  • What are the two major topics studied by a physicist
    9·1 answer
  • A power station delivers 510 kw of power at 12,000 v to a factory through wires of total resistance of 2.5 ω. how much less powe
    5·1 answer
  • Calculate the mass (in g) of 0.8 cm³ of steel. The density of steel is 7.8 g/cm³. Give your answer to 2 decimal places.
    8·2 answers
  • Gamma rays have a _____ frequency and a _____ wavelength.
    14·2 answers
  • What is the frequency of an X-ray with wavelength 0.13 nm ? Assume that the wave travels in free space. Express your answer to t
    10·1 answer
  • Once the crate in sample problem 4C is in motion, a horizontal force of 53 N keeps the crate moving with a constant velocity. Fi
    14·2 answers
  • Answer this question please and you will can’t the brain list
    11·1 answer
  • A rightward force of 4.0 N is exerted upon an object for a distance of 3.0 meters.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!