1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slava [35]
2 years ago
14

Help me plzzz I need answers

Physics
1 answer:
soldier1979 [14.2K]2 years ago
4 0

Answer:

i think it is B

Explanation:

You might be interested in
A light microscope allows for more magnification than electron microscope because it uses a beam of visible light. true false
Igoryamba

False because light microscopes have low resolve and magnification.

4 0
3 years ago
An object of mass m = 4.0 kg, starting from rest, slides down an inclined plane of length l = 3.0 m. The plane is inclined by an
kirill [66]

Answer:

(a-1) d₂=4.89 m: The object slides 4.89 m along the rough surface

(a-2) Work (Wf) done by the friction force while the mass is sliding down the in- clined plane:

Wf=  -20.4 J    is negative

(b) Work (Wg) done by the gravitational force while the mass is sliding down the inclined plane:

Wg= 58.8 J is positive

Explanation:

Nomenclature

vf: final velocity

v₀ :initial velocity

a: acceleleration

d: distance

Ff: Friction force

W: weight

m:mass

g: acceleration due to gravity

Graphic attached

The attached graph describes the variables related to the kinetics of the object (forces and accelerations)

Calculation de of the components of W in the inclined plane

W=m*g

Wx₁ = m*g*sin30°

Wy₁=  m*g*cos30°

Object kinematics on the inclined plane

vf₁²=v₀₁²+2*a₁*d₁

v₀₁=0

vf₁²=2*a₁*d₁

v_{f1} = \sqrt{2*a_{1}*d_{1}  }  Equation (1)

Object kinetics on the inclined plane (μ= 0.2)

∑Fx₁=ma₁  :Newton's second law

-Ff₁+Wx₁ = ma₁   , Ff₁=μN₁

-μ₁N₁+Wx₁ = ma₁      Equation (2)

∑Fy₁=0   : Newton's first law

N₁-Wy₁= 0

N₁- m*g*cos30°=0

N₁  =  m*g*cos30°

We replace   N₁  =  m*g*cos30 and  Wx₁ = m*g*sin30° in the equation (2)

-μ₁m*g*cos30₁+m*g*sin30° = ma₁   :  We divide by m

-μ₁*g*cos30°+g*sin30° = a₁  

g*(-μ₁*cos30°+sin30°) = a₁  

a₁ =9.8(-0.2*cos30°+sin30°)=3.2 m/s²

We replace a₁ =3.2 m/s² and d₁= 3m in the equation (1)

v_{f1} = \sqrt{2*3.2*3}  }

v_{f1} =\sqrt{2*3.2*3}

v_{f1} = 4.38 m/s

Rough surface  kinematics

vf₂²=v₀₂²+2*a₂*d₂   v₀₂=vf₁=4.38 m/s

0   =4.38²+2*a₂*d₂  Equation (3)

Rough surface  kinetics (μ= 0.3)

∑Fx₂=ma₂  :Newton's second law

-Ff₂=ma₂

--μ₂*N₂ = ma₂   Equation (4)

∑Fy₂= 0  :Newton's first law

N₂-W=0

N₂=W=m*g

We replace N₂=m*g inthe equation (4)

--μ₂*m*g = ma₂   We divide by m

--μ₂*g = a₂

a₂ =-0.2*9.8= -1.96m/s²

We replace a₂ = -1.96m/s² in the equation (3)

0   =4.38²+2*-1.96*d₂

3.92*d₂ = 4.38²

d₂=4.38²/3.92

d₂=4.38²/3.92

(a-1) d₂=4.89 m: The object slides 4.89 m along the rough surface

(a-2) Work (Wf) done by the friction force while the mass is sliding down the in- clined plane:

Wf = - Ff₁*d₁

Ff₁= μ₁N₁= μ₁*m*g*cos30°= -0.2*4*9.8*cos30° = 6,79 N

Wf= -  6.79*3 = 20.4 N*m

Wf=  -20.4 J    is negative

(b) Work (Wg) done by the gravitational force while the mass is sliding down the inclined plane

Wg=W₁x*d= m*g*sin30*3=4*9.8*0.5*3= 58.8 N*m

Wg= 58.8 J is positive

6 0
3 years ago
Block A has a mass of 0.5kg, and block B has a mass of 2kg. Block is is released at a height of 0.75 meters above B. The coeffic
VikaD [51]

Answer:

0.075 m

Explanation:

The picture of the problem is missing: find it in attachment.

At first, block A is released at a distance of

h = 0.75 m

above block B. According to the law of conservation of energy, its initial potential energy is converted into kinetic energy, so we can write:

m_Agh=\frac{1}{2}m_Av_A^2

where

g=9.8 m/s^2 is the acceleration due to gravity

m_A=0.5 kg is the mass of the block

v_A is the speed of the block A just before touching block B

Solving for the speed,

v_A=\sqrt{2gh}=\sqrt{2(9.8)(0.75)}=3.83 m/s

Then, block A collides with block B. The coefficient of restitution in the collision is given by:

e=\frac{v'_B-v'_A}{v_A-v_B}

where:

e = 0.7 is the coefficient of restitution in this case

v_B' is the final velocity of block B

v_A' is the final velocity of block A

v_A=3.83 m/s

v_B=0 is the initial velocity of block B

Solving,

v_B'-v_A'=e(v_A-v_B)=0.7(3.83)=2.68 m/s

Re-arranging it,

v_A'=v_B'-2.68 (1)

Also, the total momentum must be conserved, so we can write:

m_A v_A + m_B v_B = m_A v'_A + m_B v'_B

where

m_B=2 kg

And substituting (1) and all the other values,

m_A v_A = m_A (v_B'-2.68) + m_B v_B'\\v_B' = \frac{m_A v_A +2.68 m_A}{m_A + m_B}=1.30 m/s

This is the velocity of block B after the collision. Then, its kinetic energy is converted into elastic potential energy of the spring when it comes to rest, according to

\frac{1}{2}m_B v_B'^2 = \frac{1}{2}kx^2

where

k = 600 N/m is the spring constant

x is the compression of the spring

And solving for x,

x=\sqrt{\frac{mv^2}{k}}=\sqrt{\frac{(2)(1.30)^2}{600}}=0.075 m

5 0
3 years ago
For a block to move down an inclined plane what force has to be the greatest?
Hatshy [7]

Answer:

D) True. This is what creates the body weight

Explanation:

Let's write Newton's second law for this case. For inclined planes the reference system takes one axis parallel to the plane (x axis) and the other perpendicular to the plane (y axis)

X axis

          Wx -fr = ma

Y Axis

          N - Wy = 0

With trigonometry we can find the components of weight

          sin θ = Wₓ / W

         cos θ = W_{y} / W

         Wₓ = W sin θ

          W_{y} = W cos θ

        W  sin θ - fr = ma

From this expression as it indicates that the body is descending the force greater is the gravity that create the weight of the body

Let's examine the answers

A False This force does not apply because it is not a spring

B) False. It is balanced at all times with the component (Wy) of the weight

C) False. For there to be a rope, if it exists you should be less than the weight component for the block to lower

D) True. This is what creates the body weight

E) False. The cutting force occurs for force applied at a single point and gravity is applied at all points

5 0
3 years ago
One circuit contains only an ac generator and a resistor, and the rms current in this circuit is IR. Another circuit contains on
snow_tiger [21]

Answer:

1/3 times.

Explanation:

Let V₀ be the peak voltage .

IR ( rms )  = ( V₀ / √2 R )

R is value of resistance

IC =  ( V₀ ωC / √2  )

( 1 / ωC is reactance of capacitance in ac circuit  )

\frac{I_R}{I_C} =\frac{\frac{V_0}{\sqrt{2}R } }{\frac{V_0\omega C}{\sqrt{2} } }

= \frac{I_R}{I_C} = \frac{1}{\omega C R}

When frequency is tripled angular frequency will also be tripled

hence the ratio \frac{I_R}{I_C} becomes 1/3 times.

7 0
3 years ago
Other questions:
  • Motion can be detected by using background objects that are not moving called_______________ points
    15·1 answer
  • Water is a fluid, all fluids
    13·1 answer
  • How does Pascal's principle describe pressure throughout a fluid?
    10·1 answer
  • 1. A concave mirror has a focal length of 1.50 meters. What is the radius of curvature of the mirror? An object is placed 4.00 m
    14·1 answer
  • ¿Cuál es el rango de frecuencias comprendido entre las longitudes de onda de 220 nm, 350 nm,
    14·1 answer
  • Determine the kinetic energy of a 1000-kg roller coaster car that is moving with a speed of 20.0 m/s
    9·1 answer
  • Ran 300 meter in 40 seconds, what is the speed?
    14·1 answer
  • Explain the difference between mass and weight and<br> how they are measured.
    10·1 answer
  • How does using heat as a catalyst affect a chemical reaction?
    5·1 answer
  • a charged partocle produces an electric field with a magnitude of 2.0 N/C at a point that is 50cm away from the particle
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!