(a) Force between the two charges
The electrostatic force between the two charges is given by:

where k is the Coulomb's constant, q1 and q2 the two charges, r their separation.
In this problem:



Substituting into the equation, we find

(b) direction of particle q2
Particle q2 wants to move in the direction of the force acting on it. The direction of the force depends on the relative sign of the two charges: like charges attract each other, opposite charges repel each other. In this case, the two charges are both positive, so they repel each other and q2 tends to move away from particle q1.
C. 32400 because 540 * 60 = 32400
Answer: 1000 Hz · 0,5 m = 500 m/s
Explanation: speed = frequency · wavelength
Answer:
(a) 490 N on earth
(b) 80 N on earth
(c) 45.4545 kg on earth
(d) 270.27 kg on moon
Explanation:
We have given 1 kg = 9.8 N = 2.2 lbs on earth
And 1 kg = 1.6 N = 0.37 lbs on moon
(a) We have given mass of the person m = 50 kg
As it is given that 1 kg = 9.8 N
So 50 kg = 50×9.8 =490 N
(b) Mass of the person on moon = 50 kg
As it is given that on moon 1 kg = 1.6 N
So 50 kg = 50×1.6 = 80 N
(c) We have given that weight of the person on the earth = 100 lbs
As it is given that 1 kg = 2.2 lbs on earth
So 100 lbs = 45.4545 kg
(d) We have given weight of the person on moon = 100 lbs
As it is given that 1 kg = 0.37 lbs
So 100 lbs 
Net Force = (mass) x (acceleration) (Newton #2)
Net Force = (50 kg) x (6 m/s² down)
Net Force = (50 * 6) (kg-m/s² down)
<em>Net Force = 300 Newtons down</em>