Answer: A (
,309.8°)
B (2
, 315°)
C (
, 26.56°)
Explanation: To transform rectangular coordinates into polar coordinates use:
and 
For point A:




°
Point A is in the II quadrant, so we substract the angle for 360° since it is in degrees:

309.8°
Polar coordinates for point A is (
, 309.8°)
For point B:





°
Point B is in IV quadrant, so:

315°
Polar coordinates for point B is (
, 315°)
For point C:





26.56°
Polar coordinates for point C is (
, 26.56°)
<h2>Question</h2>
why freezer is made in the upper part of refrigrator
<h2>✒ Answer</h2>
the cold air produced from it is denser than the warmer air in the bottom
<h3>Explaination</h3>
Freezer is normally provided at the top of the refrigerator, because density of the cold air is high compared to the hot air. In a refrigerator the air contacts with the cooling coil and gets cooling.Because of the high density the cold air gets down and the warm air/hot air moves upward and gets cooling from the cooling coil/evaporator coil. This process is repeated. If the Freezer is provided at the bottom place of the refrigerator, the cold air can't to move full area of the refrigerator. So the freezer is normally provided at the top at the refrigerator
Okay so don't quote me on this but I believe the answer is A) I'm saying this because B and C make no sense. and you can't change the mass of something without changing it totally.
Answer: 14.1 m/s
Explanation:
We can solve this with the Conservation of Linear Momentum principle, which states the initial momentum
(before the elastic collision) must be equal to the final momentum
(after the elastic collision):
(1)
Being:


Where:
is the combined mass of Tubby and Libby with the car
is the velocity of Tubby and Libby with the car before the collision
is the combined mass of Flubby with its car
is the velocity of Flubby with the car before the collision
is the velocity of Tubby and Libby with the car after the collision
is the velocity of Flubby with the car after the collision
So, we have the following:
(2)
Finding
:
(3)
(4)
Finally: