Answer:
A: x^5/2
Step-by-step explanation:
When a power is a fraction the denominator is a root multiplier.
For this case we must simplify the following expression:![7 (\sqrt [3] {2x}) - 3 (\sqrt [3] {16x}) - 3 (\sqrt [3] {8x})](https://tex.z-dn.net/?f=7%20%28%5Csqrt%20%5B3%5D%20%7B2x%7D%29%20-%203%20%28%5Csqrt%20%5B3%5D%20%7B16x%7D%29%20-%203%20%28%5Csqrt%20%5B3%5D%20%7B8x%7D%29)
We rewrite:

We rewrite the expression:
![7 (\sqrt [3] {2x}) - 3 (\sqrt [3] {2 ^ 3 * 2x}) - 3 (\sqrt [3] {2 ^ 3 * x}) =](https://tex.z-dn.net/?f=7%20%28%5Csqrt%20%5B3%5D%20%7B2x%7D%29%20-%203%20%28%5Csqrt%20%5B3%5D%20%7B2%20%5E%203%20%2A%202x%7D%29%20-%203%20%28%5Csqrt%20%5B3%5D%20%7B2%20%5E%203%20%2A%20x%7D%29%20%3D)
By definition of properties of powers and roots we have:
![\sqrt [n] {a ^ m} = a ^ {\frac {m} {n}}](https://tex.z-dn.net/?f=%5Csqrt%20%5Bn%5D%20%7Ba%20%5E%20m%7D%20%3D%20a%20%5E%20%7B%5Cfrac%20%7Bm%7D%20%7Bn%7D%7D)
Then, taking the terms of the radical:
![7 (\sqrt [3] {2x}) - 3 (2 \sqrt [3] {2x}) - 3 (2 \sqrt [3] {x}) =\\7 \sqrt [3] {2x} -6 \sqrt [3] {2x} -6 \sqrt [3] {x} =](https://tex.z-dn.net/?f=7%20%28%5Csqrt%20%5B3%5D%20%7B2x%7D%29%20-%203%20%282%20%5Csqrt%20%5B3%5D%20%7B2x%7D%29%20-%203%20%282%20%5Csqrt%20%5B3%5D%20%7Bx%7D%29%20%3D%5C%5C7%20%5Csqrt%20%5B3%5D%20%7B2x%7D%20-6%20%5Csqrt%20%5B3%5D%20%7B2x%7D%20-6%20%5Csqrt%20%5B3%5D%20%7Bx%7D%20%3D)
We add similar terms:
![\sqrt [3] {2x} -6 \sqrt [3] {x}](https://tex.z-dn.net/?f=%5Csqrt%20%5B3%5D%20%7B2x%7D%20-6%20%5Csqrt%20%5B3%5D%20%7Bx%7D)
Answer:
Option C
Answer:
- first number = 89
- second number = 534
- third number = 189
Step-by-step explanation:
Let the first number be x
Given second number is 6 times a first number.
If first number is x then second number is 6*x = 6x
Given third number is 100 more than the first number
If first number is x then third number is x+100 = x+100
Sum of these three numbers in terms of x
is
sum = x+ 6x+x+100 = 8x+100 __________1
Given, that sum of these numbers is 812.
equating 812 with equation 1 we have,
8x+100 = 812
=> 8x = 812- 100
=> 8x = 712
=> x = 712/8 = 89.
Therefore,
first number = x = 89
second number = 6x = 89*6= 534
third number = x+100 = 89+100 = 189
Answer:
x^2-2x-13
Step-by-step explanation:
f(x) = 2x-5
g(x) = x^2 -4x-8
f(x) +g(x) = 2x-5 + x^2 -4x-8
Combine like terms
= x^2+2x-4x-5-8
=x^2-2x-13
The answers for the question shown above are the option A, the option B and the option C, which are:
A.log5(15625)
<span> B.log5(5^6)
C.6
The explanation is shown below:
By applying the logarithms properties, you have:
A. </span><span>log5(125)+log5(125)=log5(125)(125)=log5(15625)
B. </span>log5(125)+log5(125)=log5(15625)=log5(5^6)
C. og5(125)+log5(125)=log5(15625)=log5(5^6)=6log5(5)=6