Question:<em> </em><em>Find, separately, them mass of the balloon and the basket (incidentally, most of the balloon's mass is air)</em>
Answer:
The mass of the balloon is 2295 kg, and the mass of the basket is 301 kg.
Explanation:
Let us call the mass of the balloon
and the mass of the basket
, then according to newton's second law:
,
where
is the upward acceleration, and
is the net propelling force (counts the gravitational force).
Also, the tension
in the rope is 79.8 N more than the basket's weight; therefore,

and this tension must equal


Combining equations (2) and (3) we get:

since
, we have

Putting this into equation (1) and substituting the numerical values of
and
, we get:


Thus, the mass of the balloon and the basket is 2295 kg and 301 kg respectively.
That is true because if the object is moving at Forceful speeds than it will lose more of its kinetic energy
Answer:
Therefore, the moment of inertia is:
Explanation:
The period of an oscillation equation of a solid pendulum is given by:
(1)
Where:
- I is the moment of inertia
- M is the mass of the pendulum
- d is the distance from the center of mass to the pivot
- g is the gravity
Let's solve the equation (1) for I


Before find I, we need to remember that
Now, the moment of inertia will be:
Therefore, the moment of inertia is:
I hope it helps you!
Answer: distance d = 4.73e10m
Explanation: Suppose the charge on the black hole is 5740 C which is a positive charge.
Using electric potential V formula:
V = kq / d
Where K = 9.05×10^9Nm^2/C
And e = 1.6×10^-19C
But you don't need to substitute it.
1090 V = 8.99e9N·m²/C² * 5740C /d
Make d the subject of formula
d = 4.73e10 m