As we know that in order to melt the copper we need to take the temperature of copper to its melting point
So here heat required to raise the temperature of copper is given as

We know that
melting temperature of copper = 1085 degree C
Specific heat capacity of copper = 385 J/kg C
now we have



now in order to melt the copper we know the heat required is

here we know that
L = 205 kJ/kg
now from above formula


now total heat required will be


As we know that

now we have

Answer: C. Inherited traits carry the instructions for individual genes.
Explanation: bejewels I know stuff. ☆ - ~ hope this helps
Viscosity of liquids is essentially the 'thickness' of the liquid. For instance, honey and water have different viscosities. Honey has a higher one and therefore, liquids with high viscosity do not flow as well as liquids with low viscosity (water).
Simply, apply the formula

and insert the values of m = mass, v = velocity and E = Energy.
The result will be

, m = 1 kg
I believe the correct answer from the choices listed above is option D. The proportion of carbon-14 in an organism is useful in figuring out the age of that organism after it dies because <span>the proportion of carbon-14 slowly decreases after the death of the organism. Hope this answers the question.</span>