The formula for momentum is p = m*v
The conservation of momentum suggests:
m*vi = m*vf (initial mass times initial velocity = final mass times final velocity or initial momentum = final momentum)
(0.0010)(52.2) = (0.0010 + 3.3)vf
vf = (0.0010)(52.2)/(0.0010 + 3.3) = 0.0522/3.301 ≈ 0.01581 m/s
To the nearest thousandth ≈ .016 m/s
Answer:
1.5 m/s²
Explanation:
For the block to move, it must first overcome the static friction.
Fs = N μs
Fs = (45 N) (0.42)
Fs = 18.9 N
This is less than the 36 N applied, so the block will move. Since the block is moving, kinetic friction takes over. To find the block's acceleration, use Newton's second law:
∑F = ma
F − N μk = ma
36 N − (45 N) (0.65) = (45 N / 9.8 m/s²) a
6.75 N = 4.59 kg a
a = 1.47 m/s²
Rounded to two significant figures, the block's acceleration is 1.5 m/s².
Usually the coefficient of static friction is greater than the coefficient of kinetic friction. You might want to double check the problem statement, just to be sure.
The displacement ........................
Answer:
692.31 N
Explanation:
Applying,
F = ma............... Equation 1
Where F = Average force required to stop the player, m = mass of the player, a = acceleration of the player
But,
a = (v-u)/t............ Equation 2
Where v = final velocity, u = initial velocity, t = time.
Substitute equation 2 into equation 1
F = m(v-u)/t............ Equation 3
From the question,
Given: m = 75 kg, u = 6.0 m/s, v = 0 m/s (to stop), t = 0.65 s
Substitute these values into equation 3
F = 75(0-6)/0.65
F = -692.31 N
Hence the average force required to stop the player is 692.31 N
Answer:
Newton's 2nd law think soo