Answer:
859
Step-by-step explanation:
The demand for Coke products varies inversely as the price of Cole products.
Mathematically:
D α 1/p
Where D = demand, p = price of coke product
D = k/p
Where k = constant of proportionality.
Let us find k.
k = D * p
When Demand, D, is 1250, price, p, is $2.75:
=> k = 1250 * 2.75
k = $3437.5
Now, when price, p, is $4, the demand will be:
D = 3437.5/4
D = 859.375 = 859 (rounding to whole number)
The demand for the product is 859 when the price is $4.
Answer:
yea its is
Step-by-step explanation:
When roots of polynomials occur in radical form, they occur as two conjugates.
That is,
The conjugate of (a + √b) is (a - √b) and vice versa.
To show that the given conjugates come from a polynomial, we should create the polynomial from the given factors.
The first factor is x - (a + √b).
The second factor is x - (a - √b).
The polynomial is
f(x) = [x - (a + √b)]*[x - (a - √b)]
= x² - x(a - √b) - x(a + √b) + (a + √b)(a - √b)
= x² - 2ax + x√b - x√b + a² - b
= x² - 2ax + a² - b
This is a quadratic polynomial, as expected.
If you solve the quadratic equation x² - 2ax + a² - b = 0 with the quadratic formula, it should yield the pair of conjugate radical roots.
x = (1/2) [ 2a +/- √(4a² - 4(a² - b)]
= a +/- (1/2)*√(4b)
= a +/- √b
x = a + √b, or x = a - √b, as expected.
Please find the attached file for a better understanding of the explanation given here.
the attached diagram is a generated image of the first fifteen rows of a pascal's triangle. As can be seen from the image, the least four-digit number in the first fifteen rows of pascal's triangle is 1001.
In the diagram attached that number is present in the very last row and is highlighted using a yellow rectangle.