Answer:1) It is due to large cohesive force acting between the molecules of mercury that the droplets of mercury when brought in contact pulled together to form a bigger drop in order to make potential energy minimum. The temperature of this bigger drop increases since the total surface area decreases.
2) A spherical shape has the minimum surface area to volume ratio of all geometric forms. When two drops of a liquid are brought in contact, the cohesive forces between their molecules coalesce the drops into a single larger drop. This is because, the volume of the liquid remaining the same, the surface area of the resulting single drop is less than the combined surface area of the smaller drops. The resulting decrease in surface energy is released into the environment as heat.
Answer:
C6H12O6 → 2C2H5OH + 2CO2
Explanation:
Glucose is an organic molecule, specifically a sugar, with the formula C612O6 while ethanol is another organic molecule with formula; C2H5OH.
However, as rightly said in this question, ethanol can be got from glucose via a process called fermentation in the presence of a catalyst called YEAST. The balanced equation is as follows:
C6H12O6 → 2C2H5OH + 2CO2
Answer:
Explanation:
Si tomamos en cuenta el peso molecular del agua, que es equivalente a:
1 Átomo de H₂O
O = 16 gr/mol
H = 1 gr/mol
H₂O = 18 gr/mol
Teóricamente sabemos que en 1 mol de H2O habrá 18 gr.
Para obtener los moles presentes en 1 mg de H₂O, (como 1 gr = 1000 mg), decimos:
1 mol H2O ………………………….. 18000 mg
X …………………………… 1 mg
X = 1 / 18000 = 5,56 X 10⁻⁵ moles de H20
Y para obtener la cantidad de moléculas presentes, de acuerdo a los moles, multiplicamos por el número de Avogadro (6,023 X 10²³ moléculas /mol)
Moléculas de H₂O = 5,56x 10⁻⁵ mol x 6,023 x 10²³
Moléculas de H₂O = 3,34488 x10¹⁹ moléculas de H₂O
En el copo de nieve habrá 3,34488 x 10¹⁹ moléculas de H₂O.
Espero que te sirva =)
Answer:
-100 K
Explanation:
<em>Kinetic energy is related to temperature.</em> The molecules in water will move faster in warmer temperatures than in colder ones.
100 K is equal to -279.67°F (-173.15°C). So 100 K would have the lowest average kinetic energy.