Answer:
Since Beryllium has a larger atomic radius than Sulphur its electrons are not strongly attracted to the nucleus hence lost easily. But Sulphur has a small atomic radius hence electrons are more closely attracted to the nucleus.
The answer is 57.14%.
First we need to calculate molar mass of <span>NaHCO3. Molar mass is mass of 1 mole of a substance. It is the sum of relative atomic masses, which are masses of atoms of the elements.
Relative atomic mass of Na is 22.99 g
</span><span>Relative atomic mass of H is 1 g
</span><span>Relative atomic mass of C is 12.01 g
</span><span>Relative atomic mass of O is 16 g.
</span>
Molar mass of <span>NaHCO3 is:
22.99 g + 1 g + 12.01 g + 3 </span>· <span>16 g = 84 g
Now, mass of oxygen in </span><span>NaHCO3 is:
3 </span>· 16 g = 48 g
mass percent of oxygen in <span>NaHCO3:
48 g </span>÷ 84 g · 100% = 57.14%
Therefore, <span>the mass percent of oxygen in sodium bicarbonate is 57.14%.</span>
CS2 + 3O2 = CO2 + 2SO2
1 mole of CS2 gives 1 mole of CO2
12 + 2(32) = 76g of CS2 yields 44 g of CO2
Theoretically 1 g of CS2 yields 44/76 g CO2
Therefore 50 g CS2 should yield 50*44 / 76 = 28.95 g
So % yield = 103.6 % ( which is not possible because you can't create matter from nothing).
The 30g cannot be right . This is experimental err.
The atomic number increases moving left to right across a period and subsequently so does the effective nuclear charge. Therefore, moving left to right across a period the nucleus has a greater pull on the outer electrons and the atomic radii decreases.