Answer:
Systems always tend toward a state of decreasing order unless more energy is provided into the system to counteract this tendency.
Answer:
a) True. There is dependence on the radius and moment of inertia, no data is given to calculate the moment of inertia
c) True. Information is missing to perform the calculation
Explanation:
Let's consider solving this exercise before seeing the final statements.
We use Newton's second law Rotational
τ = I α
T r = I α
T gR = I α
Alf = T R / I (1)
T = α I / R
Now let's use Newton's second law in the mass that descends
W- T = m a
a = (m g -T) / m
The two accelerations need related
a = R α
α = a / R
a = (m g - α I / R) / m
R α = g - α I /m R
α (R + I / mR) = g
α = g / R (1 + I / mR²)
We can see that the angular acceleration depends on the radius and the moments of inertia of the steering wheels, the mass is constant
Let's review the claims
a) True. There is dependence on the radius and moment of inertia, no data is given to calculate the moment of inertia
b) False. Missing data for calculation
c) True. Information is missing to perform the calculation
d) False. There is a dependency if the radius and moment of inertia increases angular acceleration decreases
Answer:
The speed after being pulled is 2.4123m/s
Explanation:
The work realize by the tension and the friction is equal to the change in the kinetic energy, so:
(1)
Where:

Because the work made by any force is equal to the multiplication of the force, the displacement and the cosine of the angle between them.
Additionally, the kinetic energy is equal to
, so if the initial velocity
is equal to zero, the initial kinetic energy
is equal to zero.
Then, replacing the values on the equation and solving for
, we get:


So, the speed after being pulled 3.2m is 2.4123 m/s
The physical model of the sun's interior has been confirmed by observations of neutrino and seismic vibrations.
<u>Explanation:</u>
Sun's interior is composed of very high temperature and solar flares. So it is very difficult to understand the interior of the sun. But by using the vibrations of neutrino and seismic waves emitted by the solar waves, the physical model can be assumed.
As the interior of the sun performs continuous chain of hydrogen cycle. So the continuous emission of energy from the chain reaction releases neutrino. So these vibrations in neutrino and seismic vibrations, the physical model can be assumed easily.