Answer:
The answer is C. Pollution
I have a strange hunch that there's some more material or previous work
that goes along with this question, which you haven't included here.
I can't easily find the dates of Mercury's extremes, but here's some of the
other data you're looking for:
Distance at Aphelion (point in it's orbit that's farthest from the sun):
<span><span><span><span><span>69,816,900 km
0. 466 697 AU</span>
</span>
</span>
</span>
<span>
Distance at Perihelion
(</span></span><span>point in it's orbit that's closest to the sun):</span>
<span><span><span><span>46,001,200 km
0.307 499 AU</span> </span>
Perihelion and aphelion are always directly opposite each other in
the orbit, so the time between them is 1/2 of the orbital period.
</span><span>Mercury's Orbital period = <span><span>87.9691 Earth days</span></span></span></span>
1/2 (50%) of that is 43.9845 Earth days
The average of the aphelion and perihelion distances is
1/2 ( 69,816,900 + 46,001,200 ) = 57,909,050 km
or
1/2 ( 0.466697 + 0.307499) = 0.387 098 AU
This also happens to be 1/2 of the major axis of the elliptical orbit.
So much brighter and the moon would be so much darker than it is now because the moon is further away from the moon than it is now...
I think its 13...........
Answer:
<u>For M84:</u>
M = 590.7 * 10³⁶ kg
<u>For M87:</u>
M = 2307.46 * 10³⁶ kg
Explanation:
1 parsec, pc = 3.08 * 10¹⁶ m
The equation of the orbit speed can be used to calculate the doppler velocity:

making m the subject of the formula in the equation above to calculate the mass of the black hole:
.............(1)
<u>For M84:</u>
r = 8 pc = 8 * 3.08 * 10¹⁶
r = 24.64 * 10¹⁶ m
v = 400 km/s = 4 * 10⁵ m/s
G = 6.674 * 10⁻¹¹ m³/kgs²
Substituting these values into equation (1)

M = 590.7 * 10³⁶ kg
<u>For M87:</u>
r = 20 pc = 20 * 3.08 * 10¹⁶
r = 61.6* 10¹⁶ m
v = 500 km/s = 5 * 10⁵ m/s
G = 6.674 * 10⁻¹¹ m³/kgs²
Substituting these values into equation (1)

M = 2307.46 * 10³⁶ kg
The mass of the black hole in the galaxies is measured using the doppler shift.
The assumption made is that the intrinsic velocity dispersion is needed to match the line widths that are observed.